Regularity of Polynomials in Free Variables
Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

Regularity of Polynomials in Free Variables


We show that the spectral measure of any non-commutative polynomial of a non-commutative $n$-tuple cannot have atoms if the free entropy dimension of that $n$-tuple is $n$ (see also work of Mai, Speicher, and Weber). Under stronger assumptions on the $n$-tuple, we prove that the spectral measure is not singular, and measures of intervals surrounding any point may not decay slower than polynomially as a function of the interval's length.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View