Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

THE ORIGIN OF DOUBLE-PEAKED NARROW LINES IN ACTIVE GALACTIC NUCLEI. I. VERY LARGE ARRAY DETECTIONS OF DUAL AGNs AND AGN OUTFLOWS* * Based on observations at the NRAO Karl G. Jansky VLA (program 12A-103).

Abstract

We have examined a subset of 18 active galactic nuclei (AGNs) drawn from a sample of 81 galaxies that possess double-peaked narrow optical emission line spectra in the Sloan Digital Sky Survey, have 2 optical AGN emission components separated by >0.″2, and are detected in the Faint Images of the Radio Sky at Twenty-centimeters survey. Without follow-up observations, the sources of the double-peaked narrow emission lines are uncertain, and may be produced by kiloparsec-scale separation dual active supermassive black holes, AGN outflows, or disk rotation. In this work, we propose a new methodology to characterize double-peaked narrow emission line galaxies based on optical long-slit spectroscopy and high-resolution multi-band Very Large Array observations. The nature of the radio emission in the sample galaxies is varied. Of the 18 galaxies, we detect 2 compact flat-spectrum radio cores with projected spatial separations on the sky between 0.6 and 1.6 kpc in 3 galaxies: J1023+3243, J1158+3231, and J1623+0808. The two radio sources are spatially coincident with the two optical components of ionized gas with AGN-like line ratios, which confirms the presence of dual AGNs in these three galaxies. Dual AGNs account for only ∼15% (3/18) of the double-peaked AGNs in our sample. Gas kinematics produce ∼75% (13/18) of the double-peaked narrow emission lines, distributed in the following way: seven AGN wind-driven outflows, five radio-jet driven outflows, and one rotating narrow-line region. The remaining 10% (2/18) are ambiguous cases. Our method demonstrates the power of spatially resolved spectroscopy and high-resolution radio observations for the identification of AGN outflows and AGN pairs with angular separations as small as 0.″18.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View