Skip to main content
eScholarship
Open Access Publications from the University of California

Three-dimensional analysis of free-electron laser performance using brightness scaled variables

Abstract

A three-dimensional analysis of radiation generation in a free-electron laser (FEL) is performed in the small signal regime. The analysis includes beam conditioning, harmonic generation, flat beams, and a new scaling of the FEL equations using the six-dimensional beam brightness. The six-dimensional beam brightness is an invariant under Liouvillian flow; therefore, any nondissipative manipulation of the phase-space, performed, for example, in order to optimize FEL performance, must conserve this brightness. This scaling is more natural than the commonly-used scaling with the one-dimensional growth rate. The brightness-scaled equations allow for the succinct characterization of the optimal FEL performance under various additional constraints. The analysis allows for the simple evaluation of gain enhancement schemes based on beam phase space manipulations such as emittance exchange and conditioning. An example comparing the gain in the first and third harmonics of round or flat and conditioned or unconditioned beams is presented.

Main Content
Current View