- Main
Synchrotron-based Nickel Mössbauer Spectroscopy
Published Web Location
https://doi.org/10.1021/acs.inorgchem.5b03004Abstract
We used a novel experimental setup to conduct the first synchrotron-based (61)Ni Mössbauer spectroscopy measurements in the energy domain on Ni coordination complexes and metalloproteins. A representative set of samples was chosen to demonstrate the potential of this approach. (61)NiCr2O4 was examined as a case with strong Zeeman splittings. Simulations of the spectra yielded an internal magnetic field of 44.6 T, consistent with previous work by the traditional (61)Ni Mössbauer approach with a radioactive source. A linear Ni amido complex, (61)Ni{N(SiMe3)Dipp}2, where Dipp = C6H3-2,6-(i)Pr2, was chosen as a sample with an "extreme" geometry and large quadrupole splitting. Finally, to demonstrate the feasibility of metalloprotein studies using synchrotron-based (61)Ni Mössbauer spectroscopy, we examined the spectra of (61)Ni-substituted rubredoxin in reduced and oxidized forms, along with [Et4N]2[(61)Ni(SPh)4] as a model compound. For each of the above samples, a reasonable spectrum could be obtained in ∼1 d. Given that there is still room for considerable improvement in experimental sensitivity, synchrotron-based (61)Ni Mössbauer spectroscopy appears to be a promising alternative to measurements with radioactive sources.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-