Skip to main content
eScholarship
Open Access Publications from the University of California

Actin-dependent cell elongation in teleost retinal rods: requirement for actin filament assembly.

  • Author(s): OConnor, P
  • BURNSIDE, Beth
  • et al.
Abstract

Teleost retinal rods elongate when exposed to light. Elongation is mediated by a narrow necklike region called the myoid. In the cichlid Sarotherodon mossambicus, the rod inner segment (composed of the myoid with adjacent ellipsoid) increases in length from 12 micrometers in the dark to 41 micrometers in the light. Long light-adapted myoids contain longitudinally oriented microtubules and bundles of parallel 60-A filaments that we have identified as actin by their ability to bind myosin subfragment 1. In short dark-adapted myoids, only microtubules are recognizable. Colchicine experiments reveal that light-induced rod elongation can occur in the absence of myoid microtubules. Intraocular injections of colchicine at concentrations that disrupt virtually all rod myoid microtubules do not block rod elongation. However, rod elongation is blocked by intraocular injections of cytochalasin B or cytochalasin D. The hierarchy of effectiveness of these drugs is consistent with their effectiveness in inhibiting actin assembly and in disrupting other actin-dependent motile processes. On the basis of ultrastructural observations and the results of these inhibitor studies, we propose that the forces responsible for rod elongation are dependent not on microtubules but on actin filament assembly.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View