Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Compensatory Hippocampal Recruitment Supports Preserved Episodic Memory in Autism Spectrum Disorder

Abstract

Background

The degree to which individuals with autism spectrum disorder (ASD) evidence impairments in episodic memory relative to their typically developing (TD) counterparts remains unclear. According to a prominent view, ASD is associated with deficits in encoding associations between items and recollecting precise context details. Here, we evaluated behavioral and neural evidence for this impaired relational binding hypothesis using a task involving relational encoding and recollection during functional magnetic resonance imaging.

Methods

Adolescents and young adults (nASD = 47, nTD = 60) performed the Relational and Item-Specific Encoding task during functional magnetic resonance imaging, including item and associative recognition testing. We modeled functional recruitment within the medial temporal lobes (MTLs), and connectivity between MTL and the posterior medial (PM) network thought to underlie relational memory. The impaired relational binding model would predict a behavioral deficit driven by aberrant recruitment and connectivity of MTL and the PM network.

Results

The ASD and TD groups showed indistinguishable item and associative recognition performance. During relational encoding, the ASD group demonstrated increased hippocampal recruitment, and decreased connectivity between MTL and PM regions relative to the TD group. Within ASD, hippocampal recruitment and MTL-PM connectivity were inversely correlated.

Conclusions

The lack of a behavioral deficit in ASD does not support the impaired relational binding hypothesis. Instead, the current data suggest that increased recruitment of the hippocampus compensates for decreased MTL-PM connectivity to support preserved episodic memory in ASD. These findings suggest a compensatory neurodevelopmental mechanism that may support preserved cognitive domains in ASD: local hyperrecruitment may offset connectivity aberrations in individuals with ASD relative to TD subjects.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View