- Main
Dynamics of spike-specific neutralizing antibodies across five-year emerging SARS-CoV-2 variants of concern reveal conserved epitopes that protect against severe COVID-19.
Published Web Location
https://doi.org/10.3389/fimmu.2025.1503954Abstract
INTRODUCTION: Since early 2020, several SARS-CoV-2 variants of concern (VOCs) continue to emerge, evading waning antibody mediated immunity produced by the current Spike-alone based COVID-19 vaccines. This caused a prolonged and persistent COVID-19 pandemic that is going to enter its fifth year. Thus, the need remains for innovative next generation vaccines that would incorporate protective Spike-derived B-cell epitopes that resist immune evasion. METHODS: Towards that goal, in this study we (i) Screened the sequences of Spike among many VOCs and identified conserved and non-conserved linear B-cell epitopes; (ii) Compared titers and neutralization antibodies specific to these conserved and non-conserved B-cell epitopes from serum of symptomatic and asymptomatic COVID-19 patients that were exposed to multiple VOCs across the 5-year COVID-19 pandemic, and (iii) Compared protective efficacy of conserved versus non-conserved B-cell epitopes against the most pathogenic Delta variant in a humanized ACE-2/HLA transgenic mouse model. RESULTS: We found robust conserved B-cell epitope-specific antibody titers and neutralization in sera from asymptomatic COVID-19 patients. In contrast, sera from symptomatic patients contained weaker antibody responses specific to conserved B-cell epitopes. A multi-epitope COVID-19 vaccine that incorporated the conserved B-cell epitopes, but not the non-conserved B-cell epitopes, significantly protected the ACE2/HLA transgenic mice against infection and COVID-19 like symptoms caused by the Delta variant. DISCUSSION: These findings underscore the importance of conserved B-cell epitopes in generating robust protective immunity against severe COVID-19 symptoms caused by various VOCs, providing valuable insights for the development of broad-spectrum next generation Coronavirus vaccines capable of conferring cross-variant protective immunity.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-