Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Transcriptional Abnormalities of Hamstring Muscle Contractures in Children with Cerebral Palsy

Abstract

Cerebral palsy (CP) is an upper motor neuron disease that results in a spectrum of movement disorders. Secondary to the neurological lesion, muscles from patients with CP are often spastic and form debilitating contractures that limit range of motion and joint function. With no genetic component, the pathology of skeletal muscle in CP is a response to aberrant complex neurological input in ways that are not fully understood. This study was designed to gain further understanding of the skeletal muscle response in CP using transcriptional profiling correlated with functional measures to broadly investigate muscle adaptations leading to mechanical deficits.Biopsies were obtained from both the gracilis and semitendinosus muscles from a cohort of patients with CP (n = 10) and typically developing patients (n = 10) undergoing surgery. Biopsies were obtained to define the unique expression profile of the contractures and passive mechanical testing was conducted to determine stiffness values in previously published work. Affymetrix HG-U133A 2.0 chips (n = 40) generated expression data, which was validated for selected transcripts using quantitative real-time PCR. Chips were clustered based on their expression and those from patients with CP clustered separately. Significant genes were determined conservatively based on the overlap of three summarization algorithms (n = 1,398). Significantly altered genes were analyzed for over-representation among gene ontologies and muscle specific networks.The majority of altered transcripts were related to increased extracellular matrix expression in CP and a decrease in metabolism and ubiquitin ligase activity. The increase in extracellular matrix products was correlated with mechanical measures demonstrating the importance in disability. These data lay a framework for further studies and development of novel therapies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View