Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Discordant vascular parameter measurements in diabetic and non-diabetic eyes detected by different optical coherence tomography angiography devices

Abstract

Purpose

To compare quantitative changes in macular parameters in diabetic patients detected by two optical coherence tomography angiography (OCTA) instruments.

Methods

80 phakic eyes were classified as no diabetes, diabetes without diabetic retinopathy (DR), mild non-proliferative diabetic retinopathy (NPDR), and severe NPDR or proliferative DR (PDR). OCTA was performed using devices from two manufacturers (Zeiss and Heidelberg). Superficial and deeper vascular skeleton density (SVSD, DVSD), superficial and deeper vessel area density (SVAD, DVAD), choriocapillaris flow voids (CCFV), and choroidal flow voids (CFV) were calculated. Inter-device comparisons were performed using the size comparison index (SCI) and the discrepancy index (DI).

Results

The two devices were inconsistent in SVSD, DVSD, DVAD, CCFV and CFV parameters (all P < 0.05). In addition, the SCI was positive for DVAD (all P < 0.001) and negative for SVSD, DVSD, CCFV and CFV in all groups (all P <0.001), except for DVSD in severe NPDR or PDR. The discrepancy index was not significantly different among groups for SVD, SPD, DVD, DPD and CFV (all P> 0.05). The mean DI of CCFV was statistically different between the four groups (P < 0.001).

Conclusions

The two instruments were largely inconsistent in the measurement of macular parameters relevant to DR. The choice of imaging device can impact OCTA analytics and should be taken into account when drawing conclusions about DR-related changes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View