Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

The role of Mg2+ in the inactivation of inwardly rectifying K+ channels in aortic endothelial cells.

Abstract

We have studied the role of Mg2+ in the inactivation of inwardly rectifying K+ channels in vascular endothelial cells. Inactivation was largely eliminated in Mg(2+)-free external solutions and the extent of inactivation was increased by raising Mg2+o. The dose-response relation for the reduction of channel open probability showed that Mg2+o binds to a site (KD = approximately 25 microM at -160 mV) that senses approximately 38% of the potential drop from the external membrane surface. Analysis of the single-channel kinetics showed that Mg2+ produced a class of long-lived closures that separated bursts of openings. Raising Mg2+o reduced the burst duration, but less than expected for an open-channel blocking mechanism. The effects of Mg2+o are antagonized by K+o in manner which suggests that K+ competes with Mg2+ for the inactivation site. Mg2+o also reduced the amplitude of the single-channel current at millimolar concentrations by a rapid block of the open channel. A mechanism is proposed in which Mg2+ binds to the closed channel during hyperpolarization and prevents it from opening until it is occupied by K+.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View