Skip to main content
eScholarship
Open Access Publications from the University of California

Temperature dependent thermal conductivity of pure silica MEL and MFI zeolite thin films

  • Author(s): Fang, Jin
  • Huang, Yi
  • Lew, Christopher M.
  • Yan, Yushan
  • Pilon, Laurent
  • et al.
Abstract

This paper reports the temperature dependent cross-plane thermal conductivity of pure silica zeolite (PSZ) MFI and MEL thin films measured using the 3ω method between 30 and 315 K. PSZ MFI thin films were b-oriented, fully crystalline, and had a 33% microporosity. PSZ MEL thin films consisted of MEL nanoparticles embedded in a non-uniform and porous silica matrix. They featured porosity, relative crystallinity, and particle size ranging from 40% to 59%, 23% to 47%, and 55 to 80 nm, respectively. Despite their crystallinity, MFI films were found to have thermal conductivity smaller than that of amorphous silica due to strong phonon scattering by micropores. In addition, the effects of increased relative crystallinity and particle size on thermal conductivity of MEL thin films were compensated by the simultaneous increase in porosity. Finally, thermal conductivity of MFI zeolite was predicted and discussed using the Callaway model based on the Debye approximation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View