Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Artificial magnetism at terahertz frequencies from three-dimensional lattices of TiO2 microspheres accounting for spatial dispersion and magnetoelectric coupling

  • Author(s): Lannebère, S
  • Campione, S
  • Aradian, A
  • Albani, M
  • Capolino, F
  • et al.

We employ the generalized Lorentz-Lorenz method to investigate how both magnetoelectric coupling and spatial dispersion influence the artificial magnetic capabilities at terahertz frequencies of the representative case of a metamaterial consisting of a three-dimensional (3D) lattice of TiO microspheres. The complex wavenumber dispersion relations pertaining to modes supported by the array, traveling along one of the principal axes of the array with electric or magnetic field polarized transversely and longitudinally (with respect to the mode traveling direction), are studied and thoroughly characterized. One mode with transverse polarization is dominant at any given frequency for the analyzed dimensions, proving that the 3D lattice can be treated as a homogeneous medium with defined electromagnetic material parameters. We show, however, that bianisotropy is a direct consequence of magnetoelectric coupling, and the dyadic expressions of both effective and equivalent material parameters are derived. In particular, we analyze the effect of spatial dispersion on the effective parameters relative to a composite material made by a 3D lattice of TiO microspheres with filling fraction around 30% and near the first Mie magnetic dipolar resonance. Finally, we homogenize the metamaterial in terms of equivalent index and impedance, and by comparison with full-wave simulations, we explain the presence of the unphysical antiresonance permittivity behavior observed in previous work. © 2014 Optical Society of America. 2 2

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View