Skip to main content
Open Access Publications from the University of California

Factors and Processes Affecting Delta Levee System Vulnerability

  • Author(s): Deverel, Steven J.;
  • Bachand, Sandra;
  • Brandenberg, Scott J.;
  • Jones, Cathleen E.;
  • Stewart, Jonathan P.;
  • Zimmaro, Paolo
  • et al.

We appraised factors and processes related to human activities and high water, subsidence, and seismicity. Farming and drainage of peat soils caused subsidence, which contributed to levee internal failures. Subsidence rates decreased with time, but still contributed to levee instability. Modeling changes in seepage and static slope instability suggests an increased probability of failure with decreasing peat thickness. Additional data is needed to assess the spatial and temporal effects of subsidence from peat thinning and deformation. Large-scale, state investment in levee upgrades (> $700 million since the mid-1970s) has increased conformance with applicable standards; however, accounts conflict about corresponding reductions in the number of failures.

Modeling and history suggest that projected increases in high-flow frequency associated with climate change will increase the rate of levee failures. Quantifying this increased threat requires further research. A reappraisal of seismic threats resulted in updated ground motion estimates for multiple faults and earthquake-occurrence frequencies. Estimated ground motions are large enough to induce failure. The immediate seismic threat, liquefaction, is the sudden loss of strength from an increase in the pressure of the pore fluid and the corresponding loss of inter-particle contact forces. However, levees damaged during an earthquake that do not immediately fail may eventually breach. Key sources of uncertainty include occurrence frequencies and magnitudes, localized ground motions, and data for liquefaction potential.

Estimates of the consequences of future levee failure range up to multiple billions of dollars. Analysis of future risks will benefit from improved description of levee upgrades and strength as well as consideration of subsidence, the effects of climate change, and earthquake threats. Levee habitat ecosystem benefits in this highly altered system are few. Better recognition and coordination is needed among the creation of high-value habitat, levee needs, and costs and benefits of levee improvements and breaches.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View