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Restoring Transparency to Computational Solutions 
 

Abstract Computational tools in support of decision making have 
grown greatly in power during recent decades owing in large measure to 
Moore’s Law.  Nothing like this law operates in the realm of analytical 
thinking, which has led to an increasingly lopsided emphasis on one at the 
expense of the other among decision support system developers.  The 
increased emphasis on computational tools is a mixed blessing, for these 
seldom excel at revealing why the solutions they yield are what they are.  
Yet in many situations, decision makers and policy makers need to 
understand the why behind these solutions in order to convince themselves 
and others of the need for action or to deepen their own understanding of 
the system under study.  This chapter advocates and illustrates an 
approach to using conceptually simple models, arguments, exhibits and 
spreadsheets as adjuncts to complex computational models to help explain 
important aggregate properties of detailed computational solutions.  This 
can improve the transparency, and hence the value, of such solutions. 

 
Model-based analytical thinking in support of decision making first occurred on a 

significant scale in the late 1930s, about five years before the first digital computers.  
Computers were quickly recognized as a valuable tool for embodying and solving 
decision models, and contributed greatly to the post-war flowering of operations research 
and decision support systems (not called that at the time).  One might say that the fields 
of decision modeling and computers were advancing with comparable speed until the 
early 1960s, when the first integrated circuits were produced.  At that point, Moore’s Law 
led to exponentially rapid advances in computers and communications that continue to 
this day.  Decision modeling, on the other hand – being essentially intellectual in 
character – continued to accumulate its capital in the form of articles, books, and 
experienced know-how at what must surely be a low-order polynomial rate.  This 
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difference in developmental rate has profoundly impacted the practice of decision 
modeling by markedly changing the most advantageous mix of decision support activities 
away from analytical thinking toward greater use of computer-based decision tools.  

 
Thus, decision support is increasingly about applying decision analysis software, 

neural networks, OLAP, optimization software, simulation, spreadsheets and their add-
ins, statistical analysis software, and other computer-based tools. 

 
This ascendance of computational approaches is perfectly understandable in light of 

their increasing comparative advantage, but something tends to be lost as a result: 
decision support practitioners may become less able to explain the why of their results as 
their studies become more computational.  This is because computational tools typically 
tell you what but not why.  Why does a neural network flag some credit card transactions 
as likely to be fraudulent but not flag others?  Why does a large mixed integer linear 
programming model yield a particular configuration of facility locations and 
transportation flows?  Why does a service system simulation result in a particular average 
utilization for a certain category of equipment?  The answers must be in the data, the 
model, and the computational method’s structure, but it takes extra work to find those 
answers.  Such work may be undertaken too seldom amid the distractions and pressures 
of today’s business environment. 

 
Sometimes “knowing why” matters.  If a credit card transaction is flagged as possibly 

fraudulent and investigative action is to be undertaken, then the more transparent the 
reasons for flagging the easier it will be to conduct the investigation and the more readily 
will the credit card holder forgive an intrusive inquiry.  If a supply chain needs to be 
reconfigured to reduce cost and delivery cycle times, then the more transparent the 
reasons for recommended changes the easier it will be for the top logistics executive to 
understand them and to convince others of the need for change.   If adding a certain piece 
of new equipment to a service system is the best way to improve service levels, those 
who must authorize the new expenditure may ask why one kind of equipment rather than 
another ought to be added.   

 
Unfortunately, few computational methods offer much transparency.  They tend to be 

fully occupied with their main task of answering “what” questions like what credit card 
transactions are likely to be fraudulent, what the best configuration is for a supply chain, 
and what the average machine utilizations are in a service system under given conditions. 
 

The main point of this chapter is to advocate using conceptually simple models, 
arguments, exhibits, and spreadsheets in tandem with full-scale computational 
models as a way to better understand why detailed results are what they are.  
Conceptual simplicity is important because “why” explanations must be made to decision 
and policy makers who have little time or appetite for complexity.  Models are fine so 
long as they can be explained easily and quickly, preferably with graphical aids.  
Informal arguments involving elementary reasoning, common sense, and contextual 
understanding are also fine.  They must avoid higher mathematics (inappropriate to the 
intended audience) but ideally they should be based on mathematically sound arguments.  
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Straightforward spreadsheets are also acceptable now that this technology is ubiquitous in 
business.  They have many possible uses, including approximating or verifying quantities 
that properly require complex calculations, and exhibiting idealizations of system 
behavior otherwise buried inside a detailed computational model. 

 
Such means are, of course, limited in what they can accomplish by comparison with 

means of unlimited conceptual complexity and scale of computation.  Perhaps the main 
consequence is that one can only aspire to explain the results of full-scale computational 
models at a relatively aggregate level of detail.  Generally one chooses selected aspects 
and important aggregate properties of detailed computational results and seeks to explain 
those.  If these aspects and properties are well chosen, explanations transparently 
accessible to a non-technical audience will be possible and of considerable value to them.  
Fortunately, highly aggregate properties tend to be more interesting to decision and 
policy makers than very detailed properties because they give a “big picture” within 
which details can be assimilated as necessary, and they tend to be easier to understand 
using simple methods.   

 
Our focus on conceptually simple models, arguments, exhibits and spreadsheets is not 

meant to deny that carefully designed suites of full-scale solver runs (scenario studies, 
parametric and sensitivity analysis, etc.) can help illuminate the “why” behind the “what” 
of the detailed computational results.  That approach can be quite effective.  Rather, the 
aim here is to highlight an oft-neglected but illuminating role for the small and simple as 
adjuncts to complex models and computations.  This should lead to greater acceptance of 
detailed results, if not to their justified rejection, and hence to greater willingness to act 
on them.  Either way, an organization’s value from decision support systems would 
increase. 

 
This approach is not well suited to every decision support application.  We primarily 

have in mind applications where persons not expert in decision technology play a role in 
deciding what to do with computational “solutions”.  It is here that the insights offered by 
simple methods can be most helpful.  Real-time and on-line applications that help 
mechanize business processes, where there is little or no human review of individual 
cases, offer little scope for even the best such methods to help after such applications are 
installed, although transparency still can be helpful during development. 

 
Two examples from very different contextual and methodological domains illustrate 

the recommended approach: the first concerns facility location for a distribution system, 
and the second concerns choosing the number of patrol cars to assign to a police precinct.  
A conclusion summarizes and reflects on how these examples may help guide similar 
efforts for other kinds of applications.   
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1. FIRST EXAMPLE: DISTRIBUTION CENTER NETWORK 
DESIGN 

 
Nearly all manufacturers with distribution centers (DCs) that are not co-located at a 

plant face a DC network design problem.  For a given demand-cost-capacity scenario, in 
one of the simplest versions of this problem they typically want to know: 

 
• How many DCs should there be? 
• Where should these be located? 
• What should the product flows be between plants and DCs? 
• Which customers should get which products from which DCs? 

 
Answering these questions requires the ability to configure an entire distribution system 
so as to meet all demand subject to all applicable constraints at minimum total annual 
cost.  

 
Large-scale optimization software capable of computing answers to such questions 

for practical problems of almost any size has existed for more than two decades 
(Geoffrion and Powers 1995) and is widely used, but it does not directly yield 
explanations for why its answers are what they are.  Such explanations require either a 
suitable series of optimization runs or an analysis of the type discussed below, or both. 
  

It is best to begin by first seeking explanations of managerially interesting, very 
highly aggregate properties of an optimal solution, turning afterward to less aggregate 
properties as interest warrants.  For example, the optimal number of DCs is almost 
always of great interest to senior logistics managers.  Which particular candidate DCs 
should be open usually is of interest only after a reasonable level of comfort has been 
achieved concerning whether the current number of DCs is too high or low. 

 
How, then, can one use conceptually simple means to devise transparently 

understandable explanations for senior logistics managers for important, highly aggregate 
properties of a detailed optimal solution?  We focus on the optimal number of DCs, in 
many applications the most important aggregate property of all.  More precisely, we 
focus on the shape of optimal total cost as a function of the number of open DCs in a 
detailed model, exclusive of cost components that do not depend significantly on the 
number of open DCs (those components do not impact how many DCs should be open).  
This optimal total cost function presumes that the detailed model makes the best possible 
use of each given number of DCs, which therefore requires performing a suite of 
optimization runs each with an equality constraint on the total number of open DCs.   

 
The ability to predict and explain the relevant part of the optimal total cost function is 

much more useful than just predicting and explaining the total number of open DCs, 
since the behavior of optimal total cost for a varying number of open DCs is valuable for 
a variety of purposes as explained in section A of (Geoffrion 1979).  Such a prediction is 
also far more convincing, since our audience might attribute success in predicting a single 
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number to simple good luck, whereas success in predicting a whole function is much less 
easily dismissed. 

 
We now develop a very simple analytic model that accomplishes this task for a 

particular optimal DC location study carried out some years ago.   
 
Since all demand must be met in this kind of study, knowing the optimal number of 

DCs is equivalent to knowing the optimal average DC size, where size is measured in 
terms of annual DC throughput volume in hundredweight (CWT), say.  Optimal DC size 
has been much studied analytically (e.g., Bos 1965, Rutten 2001), and such analyses 
provide the foundation for constructing explanations of the type desired. 

 
At bottom, we would tell our intended audience of senior logistics managers, what 

determines the optimal size of a DC is a single cost trade-off involving its annual fixed 
cost and the total annual cost of delivering to its customers.  The goal is to find the size 
for which the sum of these two costs is minimal on a unit ($/CWT) basis, where fixed 
cost is allocated equally to each throughput unit.  See Figure 1.  If a DC is too small, then 
the unit delivery cost will be small because just nearby customers will be served, but the 
unit fixed cost will be excessive because there isn’t enough volume to spread it over.  If a 
DC is too large, then the unit fixed cost will be small but the unit delivery cost will be 
excessive because many customers will be far from the DC.  A DC will be just the right 
size when these two effects exactly balance. 

 
Among the simplest analytic models that captures this trade-off is one that assumes 

demand to be uniformly distributed on the plane, delivery cost to be strictly proportional 
to Euclidean distance and amount delivered, fixed cost to be independent of size, and the 
shape of the DC’s service area to be circular with the DC at the center: 

 
A Circular DC service area in mi2 
ρ Density of demand in CWT/mi2 
f Fixed cost of a DC in $ 
t Delivery freight rate in $/CWT-mi. 

 
Under these assumptions, the unit fixed cost as a function of A is  
 
(1) f/ρA    $/CWT 

 
and the unit delivery cost is 

 
(2) ⅔ (A/π)½ t     $/CWT.    

 
Figure 1 is a graph of these functions and their sum using values for ρ, f, and t from an 
actual consumer products manufacturer (Geoffrion 1976).  The minimum over A of (1) 
plus (2) is at  
 
(3) A* =  (9π)⅓ (f/ρt)⅔    mi2.    
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Figure 1. Unit DC Fixed and Delivery Cost Trade-off Determines the 
Optimal Service Area (data for a consumer products manufacturer) 

 
The fixed cost function (1) is transparent, since ρA is just the total demand in a 

service area of A mi2, but the delivery cost function (2) contains a mysterious factor and 
square root that are not transparent without further explanation.  Taking the integral that 
proves (2) or the derivative that proves (3) would be inconsistent with the goal of 
managerial transparency. 

 
How to explain where (2) and (3) come from?  First consider (2).  Clearly, unit 

delivery cost in $/CWT must equal t times the average delivery distance traveled in 
miles.  This distance must be some fraction of the radius r of a circle whose area is A; 
since A = π r2, as almost every manager knows, r must solve that simple equation and so 
r = (A/π)½.  Thus the average delivery distance traveled must be some fraction of (A/π)½, 
which explains the mysterious square root in (2). 

 
Formula (2) says that this fraction is ⅔.  This number has face validity – obviously 

the average distance traveled is a bit more than ½ r – and the justification of (2) using 
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only elementary arguments probably should stop here.  If necessary, however, a simple 
argument for the value ⅔ could be provided. 

 
The simplest argument takes the form of a simple physical demonstration.  By 

symmetry, it suffices to examine any very narrow “pizza slice” taken from the service 
area.  If one makes a lamina in the shape of an isosceles triangle with a very narrow 
vertex angle and then balances it on a knife edge, the lamina will balance at a point ⅔ of 
the way from its vertex to its base because that is the location of its center of mass about 
the median falling from the vertex.  (Average delivery distance from the vertex and this 
coordinate of the center of mass are mathematically identical.)  Another derivation of the 
value ⅔ relies on brute numerical integration implemented in a spreadsheet, which can be 
set up to be much more transparent than the corresponding manipulation in calculus.  The 
easiest design divides the circular service area into many narrow annuli of equal width.  
Nothing more than the formula for the circumference of a circle is needed to set up a 
spreadsheet whose estimate of average delivery distance converges to ⅔ as the width of 
the annuli approaches 0. 
 

Numerical evaluation of (3), although not the formula itself, is easy once (2) is 
accepted because it is obvious from the total unit cost plot of Figure 1 what the optimal 
service area is and why: it is the point at which the incremental changes in the two costs 
being traded off exactly cancel as the DC service area changes.  There is no need to take 
a derivative of (1) plus (2) and set it equal to 0. 

 
Determining A* from a graph like Figure 1 leads to the optimal number of DCs, for if 

n is the number of DCs and A+ is the total demand area to be served in square miles, then 
obviously minimizing total cost requires all DCs to have area A* and the analytic model 
predicts 
 
(4) n* = A+/A*.     
 

As discussed earlier, it is not so much the ability to transparently predict the number 
of DCs open in an optimal solution of a detailed, large-scale optimization model that is of 
interest to decision makers as is the ability to predict the optimal total cost function 
produced by parametrically varying the number of DCs that must be open.  Call this 
function TC*(n), where cost components that do not depend significantly on the number 
of open DCs are excluded.  We focus on the shape of this function, best captured by 
normalizing both its domain and range scales.  We normalize in two steps for the analytic 
model: first for the n scale, then for the total-cost scale.  

 
To write down TC*(n) for the analytic model, one must be able to specify the service 

areas of all n DCs so that they sum to A+ and minimize total cost.  Lagrange multipliers 
can easily be used to show that all service areas must be the same size in an optimal 
solution, but this would destroy managerial transparency.  Instead, this result can be seen 
easily from the shape (convexity) of (1) plus (2) in Figure 1, the essential observation 
being this: for any two points on this curve, the average of their values is greater than the 
value for the average of the two service areas.  Since all pairs of DCs need to have the 
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same-sized service areas to minimize their joint costs, all n DCs need to have the same-
sized service areas to minimize total costs.  Thus A must equal A+/n in (1) and (2) in 
order for total costs to be minimized, and multiplying the sum of these unit costs by total 
demand (ρA+) yields 
 
(5) TC*(n)  =  (fn/ρA+) (ρA+) + ⅔ (A+/nπ)½ t (ρA+). 
 

To normalize the n scale around n*, write TC*(n) in the form TC*( (n/n*) n*) and 
collect terms in (n/n*).  After some simple algebra and using (4) to rewrite n* and (3) to 
rewrite A*, one obtains  
 
(6) TC*(n)  =  [⅓ (n/n*) + ⅔ (n/n*)-½] (fA+/(9 π)⅓ (f/ρt)⅔). 
 
Normalizing the cost scale around TC*(n*) yields 
 
(7) TC*(n)      =   ⅓ (n/n*) + ⅔ (n/n*)-½ 

TC*(n*)  
 
which, surprisingly, does not depend on any of the problem data parameters (ρ, f, t, A+).  
It implies, for example, that if n/n* = 1.4 in the analytic model, then total fixed plus 
delivery costs exceed the minimum attainable value by 3% no matter what the problem 
data are.  Formula (7) springs entirely from the geometry of the plane. 
 

Figure 2 graphs (7).  It also plots optimal values produced by a DC location study for 
a century-old mining company.  That study had 23 products produced at 12 plants, 51 
candidate public DC locations, and 110 customer zones.  7 optimization runs using 
Benders decomposition, each constraining the number of open DCs to a specific number, 
were executed to obtain the 7 plotted points. 

 
The agreement evident in Figure 2 is quite satisfying, and shows that even such a 

simple analytic model can produce a good prediction for the behavior of optimal 
distribution cost from a real large-scale optimization model. 

 
In other real-life DC location studies, (7) may not agree so well with the results of 

mixed integer linear programming optimizations.  Then it will be necessary to refine the 
analytic model in quest of an improved normalized formula that agrees more closely.  
There are many ways to undertake this.  One would be to consider DC service areas other 
than circular, e.g., square or hexagonal.  But from results in (Bos 1965), it is easy to show 
that this has a negligible effect on the unit delivery cost formula (2) and on all subsequent 
results.  Another refinement would be to take into account the effect of DC replenishment 
costs modeled, like delivery costs, as constant per CWT-mile.  This is done in the 
appendix of (Geoffrion 1979) where, surprisingly, it is shown that – to good 
approximation for realistic data values – (7) still holds without change in the case of a 
single plant.  Additional possible refinements include delivery freight rates that diminish 
on a per-mile basis with increasing distance from the DC and other tractable variants 
studied in (Rutten et al. 2001).  Some of these lead to changes in (7). 
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Figure 2. Predicted Minimum Total DC Fixed Plus Delivery Cost as a Function 
of the Number of Open DCs, Doubly Normalized; Actual Minimum Values for a 
Mining Company. 

 
To summarize, Figure 2 shows that we have a good understanding of why the 

detailed optimization results are what they are, at the level of the shape of the optimal 
total cost function associated with parametrically varying the number of DCs that must be 
open.  This shape derives from the cost trade-off illustrated in Figure 1.  We took pains to 
derive (7) in a way that is managerially transparent – successfully replacing both 
differential and integral calculus operations and elementary optimization theory by 
simple arguments – with just one exception unmentioned until now: we did not give a 
transparent justification for the formula (3) needed to derive (6) and hence (7).   

 
It turns out that, although it is easy to evaluate A* from a graph like Figure 1 for any 

particular values for f, ρ, and t, a sufficiently transparent derivation of the closed form (3) 
is elusive.  Fortunately, there is a workaround, and a very insightful one at that.  There is 
a managerially transparent way to graph (7) for any values for f, ρ, and t.  (Of course, we 
know from (7) that these values do not really matter.)  The key observation is that  

 
NTC*(n/n*) ≡ TC*(n)/TC*(n*)          (NTC is mnemonic for normalized total cost) 

 
and 

 
NUC(A/A*) ≡ UC(A)/UC(A*)           (NUC is mnemonic for normalized unit cost) 

 
are very close relatives, where UC(A) is defined to be (1) + (2).  Namely, 
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(8) NTC*(n/n*) = NUC(n*/n). 
 
This relation follows easily from 
 
(9a) TC*(n)   = n  UC(A)   ρA where A  = A+/n 
 
and 
 
(9b) TC*(n*) = n* UC(A*) ρA* where A* = A+/n*, 
 
both of which are managerially transparent from observations made earlier.  Using (8), it 
is a simple matter to graph NTC* once the easily-graphed function NUC is drawn.  Now 
the successful prediction shown in Figure 2 can be explained in a totally managerially 
transparent way. 
 
 
2. SECOND EXAMPLE: ALLOCATING POLICE PATROL CARS 
TO PRECINCTS 
 

The New York City-Rand Institute did extensive consulting work for the New York 
City Fire and Police Departments during the 1970s.  One project centered on how many 
patrol cars to allocate to a police precinct to service calls requiring patrol car dispatch 
(Ignall et al. 1978).  Both a simplified analytic queuing model and a detailed queuing 
simulation program were developed with the aim of investigating whether the former 
could be used for decision-making purposes rather than the latter, which was more 
cumbersome.  Note that these roles for simple and detailed models, while appropriate to 
this application, are very different from what this chapter advocates: using a simple 
model to explain a complex model’s results in an elementary way, not to replace it. 

 
The basic situation is that incoming calls arrive randomly at a police precinct, where 

they are prioritized into five categories and assigned to patrol cars for servicing.  There 
are N patrol cars, which amount to mobile servers, with random service times.  (Ignall et 
al. 1978) identifies the most important congestion measures to be Pw, the long-term 
chance that an arriving call finds all N cars busy and therefore has to wait before 
dispatch, and Wq, the long-term average time that an arriving call spends in the queue 
awaiting a patrol car to become available for dispatch. 
 

The consultants chose the M/M/N priority queuing model (Cobham 1954) even 
though its assumptions were known to be incorrect in several respects.  For example, the 
arrival process was not stationary, service times were not exponential, it takes time to 
travel to the scene of a call, cars were not always in service, and multiple cars were 
dispatched for some calls.  They used computerized records maintained by NYPD to 
estimate the model’s parameters and to specify corresponding runs of a custom discrete 
event simulation program that aimed for far greater realism than the analytic model 
permitted.  That program – 700 lines of SIMSCRIPT II.5 not counting the geometric 
specifications of the precinct under study or the historical “job stream” of calls that drives 
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the simulation – built in the five complexities just mentioned, among others, and was 
duly validated against historical data.   

 
Upon comparing results as N varied over its relevant range, they found that the 

queuing model gave estimates of Pw and Wq quite good enough by comparison with the 
detailed simulation estimates to convince NYPD that the queuing model could be used 
for decision-making purposes in place of the detailed simulation.  Some of these results 
are reproduced in Figures 3A and 3B. 
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Figure 3A. Unavailability of Patrol Cars versus  
Number of Cars Assigned to Precinct 
Recreated from Figure 1 of (Ignall et al., 1978) (4 PM to Midnight Tour) 

 
The main discrepancy, under-estimation of congestion, was anticipated because the 

simulation model permitted multi-car dispatch. 
 
Plots like these, which show the trade-off between number of cars and surrogate 

measures for public satisfaction, marked the end of the formal analysis.  It was up to 
NYPD officials to decide where to operate on these trade-off curves, that is, to decide 
how many patrol cars to allocate to a given precinct. 
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Figure 3B. Average Delay in Queue versus Number of  
Patrol Cars Assigned to Precinct  
Recreated from Figure 2 of (Ignall et al., 1978) (4 PM to Midnight Tour) 

 
Having established that a highly simplified analytic queuing model captures the 

essence of the detailed patrol car dispatch simulator (perhaps after empirical adjustment 
for the mentioned cause of under-estimation), we turn now to the central question: Can 
this simple model be used to construct insightful explanations for mathematically naïve 
decision makers of why Pw and Wq vary with N as they do?  The regularity evident in 
Figure 3 begs for transparent explanation. 

 
The M/M/N priority model is well understood mathematically.  Unfortunately, this 

understanding is not accessible to our intended audience.  Yet it is possible to answer the 
central question in a way that appeals to intuition rather than higher mathematics.   

 
Below we assume a first-come-first-served queuing discipline rather than a priority 

discipline where calls fall into priority classes that determine which waiting call is served 
next, because there is no indication in (Ignall et al., 1978) or in the supporting RAND 
reports that service times differ for different priority classes.  When service time 
distributions are the same for all classes, the M/M/N priority model reduces to standard 
M/M/N so far as Pw and Wq are concerned.  A tiny amount of standard queuing notation 
will be useful, which should be bowdlerized when speaking to a non-technical audience: 
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λ for the call arrival rate and µ for the service rate of each patrol car server.  Let the unit 
of time be one minute.  

 
It would be nice if there were an intuitively accessible derivation of the general 

formula for Pw for the M/M/N model, both as an end in itself and because from it one can 
pass with intuitive ease to a general formula for Wq (see below).  Then everything needed 
to explain the theoretical curves for Pw and Wq in Figure 3 would be at hand.  
Unfortunately, we know of no such derivation.  One can, however, develop some useful 
insights and provide a simple tool for estimating Pw as accurately as desired. 
 

A good starting point is this simple conservation law: in the long term, what goes into 
the system must equal what comes out (non-technical people will likely accept that the 
system does not “blow up”, but if not then the spreadsheet simulation introduced later 
gives evidence that it does not).  What goes in over a very long period of T minutes is 
close to λT calls demanding service.  What comes out over the same period is close to  

 
[long-term fraction of all servers that are busy]NµT  

 
served calls.  Setting these quantities equal to one another yields  
 

Observation 1: If M/M/N total service capacity is sufficient to keep up with 
demand for service over the long term (Nµ > λ), then the long-term fraction of all 
servers that are busy is λ /Nµ. 

 
Next comes a nearly trivial but still fundamental fact about what is really going on in 

M/M/N and most other queuing systems: 
 

Observation 2: If Nµ > λ for M/M/N, then the queuing congestion that arrivals 
experience can be viewed as occurring because demands for service are not 
coordinated with the availability of service capacity. 

 
To see this, notice from Observation 1 that not all servers will be busy all the time.  

Each server becomes idle infinitely often over an infinite time span because otherwise the 
conclusion of Observation 1 could not hold.  In fact, by randomness, all servers will 
simultaneously become idle infinitely often over an infinite time span.  Consider any time 
segment that begins and ends with times at which all servers are idle.  Clearly all demand 
for service in such a segment, as measured by the total actual service time, could have 
been met without any delay whatever if the arrival times could have been adjusted to 
coincide with a server being free, or if the servers could have adjusted their service times 
to assure that no arrival had to wait for service, or by some combination of these two 
kinds of adjustments.  For example, the partial sequence of arrival times {… 112.4, 
115.5, 123.0, …} might need adjustment to {… 112.4, 117.7, 123.0, …} in order to 
preclude waiting by the second of these arrivals.   
 

It is important to notice that such adjustments would not require changing either the 
total number of arrivals or the total time that the servers work during the considered time 
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segment.  In other words, it is control over the individual inter-arrival times and/or of 
service times that is needed for perfect coordination, rather than control over their 
averages.  The averages can stay the same.  Total control of either would suffice, as 
would enough partial control over one or both.  Notice that this control does not 
necessarily mean diminishing variability in one of the usual statistical senses; sometimes 
an inter-arrival or service time needs to depart more rather than less from the mean of its 
statistical distribution to reduce queuing congestion. 

 
Thus  

 
Observation 2A: If Nµ > λ for M/M/N, then perfect coordination of demands for 
service with the availability of service capacity would render it unnecessary for an 
arrival ever to encounter all servers busy or to wait in a queue.  “Perfect 
coordination” means exercising sufficient control over the inter-arrival times 
and/or of the service times to avoid all service conflicts. 
NB: Coordination of any type would mean that either the arrival process or the 
service process or both would no longer obey the original assumptions. 

 
As noted, the kinds of adjustments needed are not permitted in the classical M/M/N 

queuing system and certainly are difficult to imagine in the context of patrol car 
dispatching.  But such adjustments are not at all difficult to imagine in other contexts, 
especially in the future.  A momentary digression on this topic will help establish the 
feasibility and potential importance of service supply-demand coordination for at least 
some queuing systems. 

 
Imagine a non-emergency medical clinic serving a population of people with wireless 

messaging devices.  A patient who decides to visit the clinic could message it to obtain a 
number giving his place in a virtual line awaiting service.  The clinic would keep the 
patient advised of when a doctor would likely be available, and the patient could continue 
going productively about his activities and coordinate his movements so that he arrives at 
the clinic very close to the time when a doctor becomes available to see him.  There 
would be essentially no physical waiting, although virtual waiting could still be in accord 
with classical waiting line theory.  If the cost of virtual waiting is negligible by 
comparison with the cost of physical waiting (with its unproductive dead time), the 
patient would experience essentially no costly queuing congestion at all.  That would be 
his reward for coordinating his demand for service with service availability.   

 
Some amusement parks and restaurants in pedestrian districts are already using 

similar means to reduce physical waiting, and it is by now widely recognized that 
wireless communications, especially with location-aware devices, open up important new 
possibilities for reducing queuing congestion.  For example, one of the predictions in 
(Penzias 1997) is called “The End of Lines – GPS Becomes Indispensable”.  The vision 
is that “Networked alternatives to congestion rationing will extend the just-in-time 
concept to consumer services” (p. 163).  This is one of the ways in which the 
coordination mentioned in Observation 2A could occur. 
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Observation 2A shows that coordination could reduce Pw and Wq to essentially zero 
so long as Nµ > λ , but otherwise all bets are off.  The conservation law behind 
Observation 1 shows that the backlog of unserved calls would build up without limit over 
time if Nµ < λ , so Pw would tend to 1 and Wq can be thought of as tending to infinity.  
What about the case Nµ = λ?  It turns out that, with perfect coordination, Pw and Wq 
would still remain at 0, while with some types of imperfect coordination they could be 
positive but less than 1 and infinity respectively.  With other types of imperfect 
coordination, they would rise to 1 and infinity.  We shall not consider the case Nµ ≤  λ 
further. 

 
Observation 3: If Nµ > λ for M/M/N and there is no coordination, then Pw ≤  λ /Nµ 

and equality holds when N  = 1. 
 
Like Observation 1, this follows from conservation – in the long term, what goes into the 
system must equal what comes out – but requires a more detailed version of the 
conservation equation.  What goes in over a very long period of T minutes is close to λT 
calls.  What comes out over the same period is the sum of two parts: what comes out 
while all N servers are busy and what comes out while fewer than all N servers are busy.  
The first part is close to  
 
(10) FbT(Nµ) calls, 
 
where Fb is the fraction of T during which all servers are busy (the superscript b is 
mnemonic for “busy”, not an exponent), and the second part is close to  
 
(11) (1-Fb)T(Nnbµ) calls,  
 
where Nnb is the average number of servers busy when not all servers are busy (nb for “not 
all busy”).  Notice that all T minutes are accounted for.  Notice also that, by chance, Pw – 
the long-term fraction of arrivals coming at a time when all servers are busy – will nearly 
equal Fb for sufficiently large T.  Setting the system input, λT, equal to the sum of these 
two output components yields the conservation equation 
 
(12) λT = PwT(Nµ) + (1- Pw)T(Nnbµ) 
 
or, solving for Pw,  
 
(13) Pw = (λ - Nnbµ)/(Nµ - Nnbµ). 
 
It is clear from its definition that Nnb must equal 0 for the case N = 1.  This gives the 
desired result 
 
(14) Pw = λ /Nµ  for N = 1. 
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A formula for Nnb is well known for general N, but is messy and not transparently 
accessible to non-technical people.  This development must, therefore, get along without 
it.  The inequality of Observation 3 is easily obtained by dropping the (necessarily 
nonnegative) term involving Nnb in (12).  This concludes the justification of Observation 
3 using only elementary arguments. 
 

Finally, we need a formula for Wq, the long-term average time that an arriving call 
spends in the queue waiting for a patrol car to become available for dispatch in the 
absence of any coordination.  We now develop such a formula, again using only 
elementary arguments.   

 
An arriving call will either find all patrol cars busy (the long-term frequency of this is 

Pw) or not.  Call the long-term average waiting time Wq
 b (the superscript b is for “busy”, 

not an exponent) in the first case and Wq
 nb (nb for “not all busy”) in the second.  Clearly 

Wq
 nb is zero, since there cannot be an idle car unless there is no queue, so 
 

(15) Wq = Pw Wq
 b + (1- Pw) 0.  

 
Consider now what has to take place during time Wq

 b: Lq
b +1 services must occur, where 

Lq
b is the long-term average number of calls in queue when all cars are busy.  Why the 

extra service?  Because after Lq
b services, the arriving call will be at the head of the line 

but one more service must occur in order for there to be a car available for dispatch.  
These Lq

b +1 services will be accomplished by a 100%-busy fleet that serves at the rate 
Nµ calls per minute and hence with an average service time of 1/Nµ minutes per call.  
Therefore,  
 
(16) Wq

 b = (Lq
b +1)/Nµ. 

 
Since Little’s Law (which can be explained easily to non-technical people) applies during 
the times when all patrol cars are busy, Lq

b can be written λ Wq
 b in this expression.  

Solving the result 
 
(17) Wq

 b = (λ Wq
 b +1)/Nµ 

 
for Wq

 b yields Wq
 b = 1/(Nµ - λ).  Using this in (15) yields the desired formula for Wq: 

 
Observation 4: If Nµ > λ for M/M/N and there is no coordination, then  

Wq = Pw/(Nµ - λ). 
 
Figures 4 and 5 show the price of failing to coordinate according to the results of 

Observations 2A, 3 and 4 applied to M/M/1.  They plot Pw and Wq against the ratio of 
service rate to arrival rate because this ratio is what determines system performance.  
Notice that the value of cooperation increases as the service and arrival rates approach 
one another, because arrivals are then increasingly likely to come when the patrol car is 
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out on another call.  For sufficiently large values of service rate relative to arrival rate, 
both Pw and Wq approach their perfect-coordination values of 0 because services are more 
spread out in time and arrivals less likely to come when the patrol car is busy.   
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Figure 4. Pw Can Be Reduced to Zero If Perfect Coordination  
Can Be Achieved Between Demands for Service and the  
Availability of Service Capacity 
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Figure 5. Wq Can Be Reduced to Zero If Perfect Coordination  
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It would be nice to exhibit similar graphs of Pw and Wq for general M/M/N, but 
Observation 3 supplies only a rather poor bound for Pw when N > 1 and hence neither Pw 
nor Wq can be graphed exactly without recourse to well known theoretical results 
inaccessible to a non-technical audience. 

 
We shall resort to a numerical approach to estimate Pw, but first interject a useful 

managerial insight about what happens as N increases.  As before, consider system 
performance as a function of the ratio of total service capacity to service demand.  The 
appropriate ratio is now Nµ/λ , since N servers each able to service µ calls per minute give 
a total capacity to service Nµ calls per minute if fully utilized.  Notice that one can 
increase total service capacity by increasing N, or by increasing µ, or both.  For given Nµ, 
would one prefer a larger N with a smaller µ or the reverse?  The answer is that, if Pw and 
Wq are the only performance measures of interest, one prefers the first option.   

 
The reason is that more (but proportionally slower) servers give lower values of Pw.  

Roughly, this is so because service capacity is broken into smaller chunks and thus there 
is a greater chance that at least one of these chunks will be free when a call arrives.  In 
the extreme case of very many, very slow severs, an arriving call is almost certain to find 
a free server (i.e., Pw will be very small).  The catch, of course, is that improved service 
availability is achieved at the cost of slower service times, but that is of no concern to Pw.  
The effect is quite strong, and is exhibited in Figure 6 for several values of N.  Lower 
values of Pw mean lower values of Wq also, by the formula in Observation 4. 
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Figure 6. For a Given Total Service Capacity Nµ, Increasing N Reduces Pw 
(Pw values for N > 1 from a well-known theoretical formula)  
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Note that Figure 6 shows exactly how poor the bounds of Observation 3 are for  
N > 1: just look at the gap between the N = 1 curve (which has a secondary interpretation 
as graphing the bound λ /Nµ for any N) and any other curve. 
 

As mentioned earlier, the formulas behind this graph are not accessible to a non-
technical audience for N > 1, so next we explain how to develop numerical estimates of 
Pw in an accessible manner.  In this way, one can generate graphs like Figure 6 for any 
values of N, µ, and λ . 

 
In the absence of a transparent derivation of Pw for N > 1, one can estimate it using a 

conceptually simple spreadsheet that mimics the operation of the patrol-car dispatch 
system.  Almost any of the many M/M/N spreadsheet simulators intended for educational 
purposes would suffice, possibly after cosmetic work to make it more suitable for 
viewing by police officials.  Here is one possible design. 

 
We aim at simplicity and the grossest level of detail that still yields an estimate of Pw 

that converges to the correct value if the simulation runs long enough.  One reasonable 
choice is to simulate the birth-death process associated with the classical M/M/N queuing 
model, where the process starts in a known state and the simulation clock advances in 
small increments.  As usual in this context, state means the number of calls in service or 
waiting for service at a given moment.  Such a spreadsheet can capture and graph the 
complete state history, and decision makers can inspect this as a way to improve their 
intuition about the system’s dynamic behavior as modeled.  Notice that the usual steady-
state equations are not addressed directly; Pw is estimated from simulated long-term 
behavior. 

 
Figure 7 shows one way to set up such a simulation, which ignores inter-arrival and 

service time details and focuses only on state transitions.  For sufficiently small time 
slices, the M/M/N assumptions imply that transitions to non-neighboring states occur 
negligibly often and the birth-death process for system state will look like a random walk 
with steps of length one.  The diagram in this figure shows the rules for this walk: each 
arrow indicates a possible step, and the probability of each step up (in the event of an 
arrival) and step down (in the event of a service) is annotated on the diagram.  Self-loops 
mean “no step” and have the obvious complementary probability for each state.   
 

Using the data summarized at the top, from which the rest of the spreadsheet is 
calculated dynamically, the bottom part records the detailed history of the system for any 
desired number of time slices, in this case 10,000 (more can easily be added by a single 
copy operation).  It is easy to explain how the spreadsheet works by narrating a few steps 
and following along in the state history log at the bottom.  Finally, the desired estimate of 
Pw (.772 in the particular simulation shown) comes from tallying the fraction of time 
slices for which the state is 5 or higher. 

 
 

 19



minimodel.doc  7/1/2002   9:16 AM 

Data Values
Lambda 0.16329   calls per minute Initial State of System 4
Mu 0.036   calls per minute
Slice Size 0.5   minutes             (10,000 slices = 83.33 hours)
N 5

            State Diagram

                    etc.
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6
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5
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4
0.081645 0.072

3
0.081645 0.054

2
0.081645 0.036

1
0.081645 0.018

0

Estimate of P w  from Simulation 0.772

 Time              < -------------  History  ------------- >
Slice No. State Srvrs Busy No. Waiting

1 4 4 0
2 4 4 0
3 3 3 0
4 3 3 0
5 3 3 0

rows omitted 
79 5 5 0
80 6 5 1
81 6 5 1
82 7 5 2
83 7 5 2
84 7 5 2

rows omitted 
7,768 24 5 19
7,769 24 5 19
7,770 25 5 20
7,771 25 5 20
7,772 25 5 20
7,773 26 5 21

rows omitted 
9,996 4 4 0
9,997 4 4 0
9,998 4 4 0
9,999 4 4 0

10,000 5 5 0
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Figure 7. Spreadsheet for Simulating M/M/5 Queuing System  
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Figure 8 graphs the state history for all 83⅓ hours of the simulation run of Figure 7.  
Managers should be interested to see the periodic excursions above and in the no-waiting 
zone (state < 5).  This gives realistic meaning to the simulation’s estimate that an arriving 
call will have to wait 77.2% of the time (the true steady-state probability turns out to be 
77.9%).  Another feature of this particular history is that all cars were idle twice, once 
early and once very late in the simulation. 
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Figure 8. Spreadsheet Simulation of 83⅓ Hours of Operation for 5 
Patrol Cars (“State” Equals Number of Calls Being Served or Waiting 
to Be Served) 
 

This spreadsheet enables non-technical people to estimate the value of Pw for any 
data values, including those plotted in Figure 6, without resorting to non-intuitive 
arguments.  Figure 8 also strengthens intuition concerning the dynamic behavior of patrol 
car utilization and the call queue. 

 
With Pw and Figure 6 verifiable in this way, it is time to introduce Figure 6’s 

companion for Wq using the formula given in Observation 4.  See Figure 9. 
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Wq  for M/M/N (in multiples of mean interarrival time, 1/λ )
(upper X and Y axes truncated)
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Figure 9. For a Given Total Service Capacity Nµ, Increasing N  
Reduces Wq (Wq values from Pw and the formula of Observation 4)  

 
 
This has been a fairly lengthy development.  Here is a summary of the story that 

could be told to non-technical managers concerning why the detailed simulation results 
are what they are in Figures 3A and 3B. 

 
1. Changing the number N of patrol cars allocated to a precinct changes the 

precinct’s service capacity to respond to calls.  If calls arrive randomly at rate λ 
per minute and a single patrol car can serve them at the average rate µ per minute 
(that is, with average service time 1/µ minutes), then the (maximum) precinct 
service capacity is Nµ calls per minute on average.  This capacity must be at least 
as large as λ , or obviously the patrol cars will be unable to keep up with demand 
and the number of queued calls will grow without limit.  In other words, the 
service supply-demand ratio Nµ/λ must be at least 1.  This ratio should be small 
for reasons of economy, but larger values lead to better public service. 
 

2. Two measures of service from the public viewpoint are Pw, the long-term chance 
that an arriving call finds all N patrol cars busy and therefore has to wait before 
dispatch, and Wq, the long-term average time that an arriving call spends in the 
queue awaiting a patrol car to become available for dispatch.   
 

3. If it were possible to perfectly coordinate service demand and availability, then 
both Pw and Wq could be maintained at 0 even if Nµ/λ were reduced all the way to 
its natural barrier value of 1 (Observation 2A).  Such coordination requires 
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sufficient control over either inter-arrival times or service times, or over both, so 
that no arriving call need ever encounter all cars busy.  The exercise of such 
control need not alter the average inter-arrival or service time.  Such control is 
impractical in the present context, but this observation does reveal that the lack of 
it is solely responsible for positive values of Pw and Wq when Nµ/λ > 1.   
 

4. In the absence of any coordination, both Pw and Wq deteriorate increasingly 
rapidly as the service supply-demand ratio Nµ/λ approaches its natural barrier 
value of 1.  For the special case of one patrol car, Figure 4 shows what happens to 
Pw (Observation 3) and Figure 5 shows what happens to Wq (Observation 4).  For 
the general case of N patrol cars, graphing Wq ′s behavior is easy (Observation 4) 
once Pw′s behavior is known, but unfortunately Pw′s behavior is not elementary.   
 

5. Figure 6 shows Pw′s behavior based on a classical queuing theoretic result.  It is 
elementary that increasing the number of patrol cars lowers the corresponding Pw-
curves, since more cars for a given service supply-demand ratio means more 
flexible use of idle service capacity.  But by exactly how much the curves drop is 
not elementary.  Fortunately, simple spreadsheet calculations can verify the Pw-
curves of Figure 6 and, more generally, estimate Pw for any choice of N and Nµ/λ. 
 

6. The spreadsheet shown in Figure 7, which mimics a random walk with a natural 
interpretation, is easy to understand and estimates Pw for any data values.  
Moreover, each spreadsheet recalculation yields a new realization for such a walk 
and plots it in a chart like Figure 8 that helps build intuition about the modeled 
dynamic behavior of the patrol car fleet. 
 

7. Using the spreadsheet-verified Pw values of Figure 6 and Observation 4 to 
convert these to values of Wq, one obtains Figure 9, a natural companion to 
Figure 6.  Figure 9 shows how, for any fixed service supply-demand ratio, having 
more patrol cars reduces the inefficiencies resulting from an inability to 
coordinate calls with patrol car availability. 
 

8. The analytic queuing model predictions plotted in Figure 3 are but an application 
of Figures 6 and 9 for specific data values.  These predictions are remarkably 
close (especially after adjustment for systematic bias) to the detailed simulation 
results also plotted in Figure 3 (Ignall et al. 1978).  Therefore, the analytic model, 
which has been developed in a managerially transparent way, provides a 
satisfactory “why” explanation for the detailed simulation model results. 

  
 
3. CONCLUSION 
 

Two examples have shown how computational results from detailed models can be 
explained at an aggregate level in ways that mathematically naïve managers can 
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understand.  Each explanation addresses key results of managerial interest with the help 
of a vital principle of the system at hand that determines “what is really going on” behind 
those results.  

 
In the first example, which requires large-scale optimization to properly determine 

optimal DC locations and associated decisions, the explanation addresses the aggregate 
issue often of greatest managerial interest: how total cost increases with departure from 
the optimal number of DCs assuming that the system is otherwise fully optimized.  The 
underlying vital principle is the simple unit cost trade-off shown in Figure 1. 

 
In the second example, which potentially requires discrete event simulation of a 

queuing system to properly determine how much congestion results from having a given 
number of patrol cars on duty at a police precinct, the explanation addresses two key 
aggregate operating characteristics as a function of the number of patrol cars: Pw and Wq. 
The development adopts the underlying vital principle that arriving calls experience 
congestion only because there is no coordination between demands for service and the 
availability of service capacity; service supply and demand are blind to one another.  This 
choice of vital principle deliberately favors managerial insight over mathematical insight.  
Other choices are possible.  

 
It is dangerous to generalize from just two examples, but these are still suggestive.  

For instance, they suggest some of the ways in which transparency can be lost.  The first 
illustrative application, which falls within the mathematical programming paradigm, 
loses transparency for at least three reasons: the sheer magnitude of the model data 
required, the technical nature of the algorithmic calculations required, and the scale of the 
computations necessary for true optimization.  The second illustrative application, which 
falls within a very different paradigm (queuing), loses transparency for quite different 
reasons: the sheer mass of system operating history when logged over an extended period 
to get at long-term behavior, and the mathematical sophistication needed to derive system 
operating characteristics for predicting either transient or long-term behavior (such arcana 
as differential equations, generating functions, and Laplace-Stieltjes transforms).  Very 
likely, most mathematical programming and queuing applications lose transparency for 
similar reasons. 

 
Another way in which the two examples may be suggestive is that their vital 

principles may generalize to other applications within the same general paradigms.  Cost 
trade-offs are at the heart of most mathematical programming models that seek to 
minimize some notion of total cost, although the particular driving trade-offs vary from 
model to model.  There are trade-offs among costs or other measures of merit associated 
with most queuing models also, but those may or may not yield the vital principle(s) 
responsible for the aggregate system behavior(s) of greatest interest to management.  
Lack of coordination between service demand and capacity owing to randomness, lack of 
communication, and other reasons may be a useful default vital principle for other 
queuing applications because it points to possible ways to reduce congestion. 
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Finally, the general approach taken above in these two examples is essentially the 
same even though mathematical programming and queuing applications may seem to 
have almost nothing in common.  This suggests that this general approach may be useful 
for other applications.  It comprises the following 5 steps. 
 

1. Choose aggregate system characteristics of great managerial interest in the 
context of the practical problem at hand. 
 

Example 1: Choose the optimal number of DCs and how total cost increases 
with departure from this number. 

 

Example 2: Choose Pw and Wq as functions of N. 
 
2. Identify the vital principle (or principles) largely responsible for the chosen 

system characteristics.   
 

Example 1: The trade-off between unit DC fixed cost and unit DC delivery 
cost. 

 

Example 2: The lack of coordination between service supply and demand in a 
multi-server queuing system. 

 
3. Formulate a conceptually simple and tractable model in accord with the vital 

principle(s) that can predict the chosen system characteristics. 
 

Example 1: See (1) and (2) (illustrated by Figure 1) and their associated 
assumptions.  Equations (3) – (7) give consequent system characteristics. 

 

Example 2: The classical M/M/N priority queuing model was ready-made for 
this purpose. 
 

4. Instantiate the simple model’s predictions for the chosen system characteristics 
and verify that they agree reasonably well with the detailed computational results 
for the numerical case at hand. 
 

Example 1: See Figure 2. 
 

Example 2: See Figure 3. 
 

5. Assemble these steps into a story that managers can understand and that lays bare 
for them, with the help of the vital principle(s), why the detailed computational 
results are what they are for the chosen aggregate system characteristics.  This 
requires rendering managerially transparent the simple model and its predictions 
hrough conceptually simple arguments, pictures, and spreadsheets. t

  

Example 1: Transparent explanations were given for all essential non-
elementary results, namely (2) (which ordinarily requires taking an integral) 
and (7) (which ordinarily requires elementary optimization theory and taking 
derivatives). 

 

Example 2: Most of Section 2 is devoted to developing transparent 
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explanations that circumvent the higher mathematics ordinarily used to derive 
the functions Pw(N) and Wq(N). 

 
The aim of Steps 1-4 is for an analyst to understand the why behind the what of 

detailed computational results.  Any and all analytical methods and tools are admissible.  
The aim of Step 5 is to transfer this understanding to managers who may have little or no 
analytical training; consequently, only the most elementary methods and tools are 
admissible. 

 
A vital principle introduced at Step 2 need not be a key axiom or lemma or theorem, 

or a deep mathematical insight.  Its role is not so much analytical as it is to provide a key 
thread in the story of Step 5.  We favor aiming for a “story” in Step 5, rather than a 
“simple derivation”, in the belief that this mindset will lead to better communication. 

 
Carrying out this general approach has its challenges.  Not the least of these is Step 5, 

where elementary means must be found to explain results that normally might require an 
arbitrary amount of mathematics, logic, and computational cycles.  The constraints of 
managerial transparency are daunting, even with the focus on aggregate rather than 
detailed results.  To the extent that transparency can be achieved for aggregate results of 
interest to decision and policy makers, the odds should improve that decision support 
systems will find greater acceptance and use. 
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