Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Active States During the Reduction of CO2 by a MoS2 Electrocatalyst

Abstract

Transition-metal dichalcogenides (TMDCs) such as MoS2 are Earth-abundant catalysts that are attractive for many chemical processes, including the carbon dioxide reduction reaction (CO2RR). While many studies have correlated synthetic preparation and architectures with macroscopic electrocatalytic performance, not much is known about the state of MoS2 under functional conditions, particularly its interactions with target molecules like CO2. Here, we combine operando Mo K- and S K-edge X-ray absorption spectroscopy (XAS) with first-principles simulations to track changes in the electronic structure of MoS2 nanosheets during CO2RR. Comparison of the simulated and measured XAS discerned the existence of Mo-CO2 binding in the active state. This state perturbs hybridized Mo 4d-S 3p states and is critically mediated by sulfur vacancies induced electrochemically. The study sheds new light on the underpinnings of the excellent performance of MoS2 in CO2RR. The electronic signatures we reveal could be a screening criterion toward further gains in activity and selectivity of TMDCs in general.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View