- Main
Robust maintenance policies for Markovian systems under model uncertainty
Abstract
Asset management systems help public works agencies decide when and how to maintain and rehabilitate infrastructure facilities in a cost-effective manner. Many sources of error, some difficult to quantify, can limit the ability of asset management systems to accurately predict how built systems will deteriorate. This article introduces the use of robust optimization to deal with epistemic uncertainty. The Hurwicz criterion is employed to ensure management policies are never "too conservative." An efficient solution algorithm is developed to solve robust counterparts of the asset management problem. A case study demonstrates how the consideration of uncertainty alters optimal management policies and shows how the proposed approach may reduce maintenance and rehabilitation (M&R) expenditures.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-