Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Analyzing and predicting non-equilibrium many-body dynamics via dynamic mode decomposition

Abstract

Simulating the dynamics of a nonequilibrium quantum many-body system by computing the two-time Green's function associated with such a system is computationally challenging. However, we are often interested in the time-diagonal of such a Green's function or time-dependent physical observables that are functions of one time. In this paper, we discuss the possibility of using dynamic mode decomposition (DMD), a data-driven model order reduction technique, to characterize one-time observables associated with the nonequilibrium dynamics using snapshots computed within a small time window. The DMD method allows us to efficiently predict long time dynamics from a limited number of trajectory samples. We demonstrate the effectiveness of DMD on a model two-band system. We show that, in the equilibrium limit, the DMD analysis yields results that are consistent with those produced from a linear response analysis. In the nonequilibrium case, the extrapolated dynamics produced by DMD is more accurate than a special Fourier extrapolation scheme presented in this paper. We point out a potential pitfall of the standard DMD method caused by insufficient spatial/momentum resolution of the discretization scheme. We show how this problem can be overcome by using a variant of the DMD method known as higher order DMD.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View