Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

The major iron-containing protein of Legionella pneumophila is an aconitase homologous with the human iron-responsive element-binding protein.

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC206625/pdf/jbacter00059-0380.pdf
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

Legionella pneumophila has high iron requirements, and its intracellular growth in human monocytes is dependent on the availability of intracellular iron. To learn more about iron metabolism in L. pneumophila, we have undertaken an analysis of the iron proteins of the bacterium. We first developed an assay to identify proteins by 59Fe labelling and nondenaturing polyacrylamide gel electrophoresis. The assay revealed seven iron proteins (IPs) with apparent molecular weights of 500, 450, 250, 210, 150, 130, and 85. IP150 comigrates with superoxide dismutase activity and is probably the Fe-superoxide dismutase of L. pneumophila. IP210 is the major iron-containing protein (MICP). To identify and characterize MICP, we purified the protein and cloned and sequenced its gene. MICP is a monomeric protein containing 891 amino acids, and it has a calculated molecular mass of 98,147 Da. Analysis of the sequence revealed that MICP has two interesting homologies. First, MICP is highly homologous with the human iron-responsive element-binding protein, consistent with the hypothesis that this critical iron-regulatory molecule of humans has a prokaryotic ancestor. Second, MICP is highly homologous with the Escherichia coli aconitase and to a lesser extent with porcine heart mitochondrial aconitase. Consistent with this, we found that MICP exhibits aconitase activity. In contrast to other aconitases, MICP has a single amino acid change of a potentially deleterious type at a site thought to be critical for substrate binding and enzymatic activity. However, the specific activity of MICP is roughly comparable to that of other aconitases, suggesting that the mutation has at most a mild effect on the aconitase activity of MICP. The abundance of MICP in L. pneumophila suggests either that L. pneumophila requires high aconitase and perhaps tricarboxylic acid cycle activity or that the bacterium requires large amounts of this protein to serve an additional role in bacterial physiology. A need for large amounts of MICP, which contains four Fe atoms per molecule when fully loaded, could at least partly explain L. pneumophila's high metabolic requirement for iron.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item