Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

A conserved signal-peptidase antagonist modulates membrane homeostasis of actinobacterial sortase critical for surface morphogenesis.

Abstract

Most Actinobacteria encode a small transmembrane protein, whose gene lies immediately downstream of the housekeeping sortase coding for a transpeptidase that anchors many extracellular proteins to the Gram-positive bacterial cell wall. Here, we uncover the hitherto unknown function of this class of conserved proteins, which we name SafA, as a topological modulator of sortase in the oral Actinobacterium Actinomyces oris. Genetic deletion of safA induces cleavage and excretion of the otherwise predominantly membrane-bound SrtA in wild-type cells. Strikingly, the safA mutant, although viable, exhibits severe abnormalities in cell morphology, pilus assembly, surface protein localization, and polymicrobial interactions-the phenotypes that are mirrored by srtA depletion. The pleiotropic defect of the safA mutant is rescued by ectopic expression of safA from not only A. oris, but also Corynebacterium diphtheriae or Corynebacterium matruchotii. Importantly, the SrtA N terminus harbors a tripartite-domain feature typical of a bacterial signal peptide, including a cleavage motif AXA, mutations in which prevent SrtA cleavage mediated by the signal peptidase LepB2. Bacterial two-hybrid analysis demonstrates that SafA and SrtA directly interact. This interaction involves a conserved motif FPW within the exoplasmic face of SafA, since mutations of this motif abrogate SafA-SrtA interaction and induce SrtA cleavage and excretion as observed in the safA mutant. Evidently, SafA is a membrane-imbedded antagonist of signal peptidase that safeguards and maintains membrane homeostasis of the housekeeping sortase SrtA, a central player of cell surface assembly.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View