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The Restricted EM Algorithm for Maximum Likelihood
Estimation Under Linear Restrictions

Dong K. KiM and Jeremy M. G. TAYLOR*

on the Parameters

The EM algorithm is one of the most powerful algorithms for obtaining maximum likelihood estimates for many incomplete-data
problems. But when the parameters must satisfy a set of linear restrictions, the EM algorithm may be too complicated to apply
directly. In this article we propose maximum likelihood estimation procedures under a set of linear restrictions for situations in which
the EM algorithm could be used if there were no such restrictions on the parameters. We develop a modification to the EM algorithm,
which we call the restricted EM algorithm, incorporating the linear restrictions on the parameters. This algorithm is easily updated
by using the code for the complete data information matrix and the code for the usual EM algorithm. Major applications of the
restricted EM algorithm are to construct likelihood ratio tests and profile likelihood confidence intervals. We illustrate the procedure
with two models: a variance component model and a bivariate normal model.

KEY WORDS: Bivariate normal model; Incomplete data problems; Lagrange multipliers; Likelihood ratio test; Profile likelihood
confidence interval; Restricted maximum likelihood estimation; Variance component model.

1. INTRODUCTION

The EM algorithm is one of the most powerful algorithms
for maximum likelihood estimation in incomplete data
problems. Because the EM algorithm is computationally
simple and numerically stable, it is used for a broad range
of applications, such as variance component models in nor-
mal data, finite mixture models, and multivariate normal
models with missing data (Dempster, Laird, and Rubin 1977,
Little and Rubin 1987).

The EM algorithm handles complicated missing-data
problems by using complete-data tools. It is particularly use-
ful in many situations in which there are no actual missing
data but the problem can be reformulated as a missing-data
problem such that the EM algorithm can be used. In the EM
algorithm it is usually necessary to find the conditional dis-
tribution in the E step, then use standard maximum likeli-
hood estimation for the complete-data problem in the M
step. When there are no restrictions on the parameters, each
step of the EM algorithm is usually simple and straightfor-
ward. But when the parameters must satisfy a set of linear
restrictions, the M step will usually involve complicated pro-
cedures to find the solution, and no closed form may exist.
In this case, constrained maximization routines are needed.

For data without missing information, we can use con-
strained maximum likelihood estimation methods to find
solutions under linear restrictions. For a computationally
convenient method, Nyquist (1991) proposed iteratively
reweighted least squares to estimate parameters under a set
of linear restrictions and applied the method to generalized
linear models.

Recently, Kim (1991) proposed a modification to the EM
algorithm, called the restricted EM algorithm, that incor-
porates linear restrictions on the parameters. In this work
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tistics, and Computer Science, and Department of Surgical Oncology, Uni-
versity of Illinois, Chicago, IL 60607. Jeremy M. G. Taylor is Professor,
Department of Biostatistics, University of California, Los Angeles, CA 90024.
This work was partly supported by National Institutes of Health Grants CA
45216 and Al 07370. The authors thank the referees, the associate editor,
and the editor for helpful comments and suggestions.

Kim developed the restricted EM algorithm for the specific
case of finite mixture models. He illustrated the numerical
properties of the algorithm and applied it to an overdispersed
binomial data set from radiobiology.

In this article we construct the restricted EM algorithm
for maximum likelihood estimation under linear restrictions
on the parameters. We show that this algorithm is applicable,
not only to the finite mixture model, but also to general
statistical problems in which the EM algorithm could be
used. Furthermore, we apply the restricted EM algorithm to
test hypotheses concerning linear combinations of parame-
ters and to construct confidence intervals. Although there
are several ways to construct hypothesis tests and confidence
intervals from the EM algorithm (Louis 1982; Meng and
Rubin 1991), these approaches produce Wald-type sym-
metric confidence intervals based on the asymptotic
variance-covariance matrix. In this article we apply the re-
stricted EM algorithm to produce the profile of the log-
relative likelihood for a parameter. From this likelihood-
based approach, we can construct a profile likelihood con-
fidence interval that is not forced to be symmetric.

Section 2 describes maximum likelihood estimation of
the observed data under linear restrictions on the parameters.
Section 3 proposes the restricted EM algorithm for incom-
plete data problems when the parameters must satisfy linear
restrictions. Section 4 describes some theoretical properties
of the restricted EM algorithm; and Section 5 applies the
restricted EM algorithm to obtain likelihood ratio tests and
profile likelihood confidence intervals. Section 6 illustrates
use of the restricted EM algorithm with a variance compo-
nent model and a bivariate normal model. Section 7 contains
a discussion and conclusions. Proofs can be found in the
Appendix.

2. MAXIMUM LIKELIHOOD ESTIMATION UNDER

LINEAR RESTRICTIONS ON PARAMETERS

In this section, we describe restricted maximum likelihood
estimation assuming that the observation vector has no
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missing information. Lety = (yy, »s, . . . , V») be an obser-
vation vector and let @ be a p X 1 parameter vector of interest.
Let f(y| ) be the known probability density of y indexed by
unknown parameter 6. Denote the log-likelihood of # ob-
servations by /(0|y). If there are no restrictions on the pa-
rameters, a fast and popular algorithm for maximizing /(6|y)
is a Newton-Raphson algorithm.

The score function and the observed information matrix
for the Newton—-Raphson algorithm are given by

_9l(8ly) _d%(ely)
a0 0%
where I;is assumed to be positive definite. So the unrestricted

maximum likelihood estimate of 6 is a solution of a set of
iterations given by

SU and Iy =

Ul. /< 0;choose a starting value for 6, denoted by 8y-

U2. 0U(l+l)[0U(l)] -« 0U(1) + Ial SU, where Iy and SU arec
evaluated at 0y,. Stop if 0y, has converged.

U3. 0U(l+l) « 0U(I+l)[0U(I)]; <[+ 1; go to U2.

In U2, 0y¢+1)[0u@y] denotes the (/I + 1)th term in the
Newton-Raphson sequence for the unrestricted problem
obtained by taking one Newton-Raphson step from 6.

Now suppose that there are Q linearly independent re-
strictions on the parameter 8, such that

Af = a, (1)
where A is a known linearly independent Q X p matrix de-
fining the restriction, with rank(A) = Q < p,and ais a
known Q X 1 vector.

There are a number of approaches to maximizing the log-
likelihood under the restriction (1). For generalized linear
models, Nyquist (1991) proposed restricted maximum like-
lihood estimation using a quadratic penalty function. He
considered situations in which iteratively reweighted least
squares would be used if there was no restriction, and he
showed how the algorithm could be adapted to satisfy the
restriction. The resulting procedure can also be derived using
a Lagrange multiplier approach. In this article, using the
Lagrange multiplier method, we derive an algorithm to find
the restricted maximum likelihood estimate. We use the re-
lationship between the restricted solution and the unrestricted
solution assuming that a Newton-Raphson algorithm is used
to maximize the log-likelihood.

When the Lagrange multiplier method is used to incor-
porate the restriction, the restricted log-likelihood is given
by I(0]y,\) =1(0]y) — N(a— Af), where A = (A, Ay, . . .,
Ap) are Lagrangean multipliers. When X is given, the pro-
cedure for maximization of the restricted log-likelihood
1(8]y, M) is the same as for the unrestricted maximization
in U1-U3.

A simple adaptation of the Newton-Raphson iteration
scheme leads to the restricted solution. The score function
and the information matrix for the restricted log-likelihood
can be expressed as

d
R — —l(0|y, X) = SU + A'AN and
a0
320y, N
L= - 2Dy @)
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From the relationship of the score functions and infor-
mation matrices between the unrestricted and restricted
problems, we can easily verify that the Lagrange multiplier
is a function of the unrestricted solution and the unrestricted
information matrix. A sequence g o), Or(1), Or(2) - - - for
the restricted problem is obtained by the following algorithm:

R1. I < 0; choose a starting value, Og o).

R2. Calculate 0y 1) 0z )] from U2 for the unrestricted
problem.

R3. Calculate g .1, for the restricted problem from the
following equation:

0R(I+l) = 0U(1+1)[0R(1)]
+I7'A'(AIG'A) " (a — ABygsnl0rpy])s

where I, are evaluated at g (). Stop if 6z ) has converged.
R4. | < [+ 1;goto R2.

The expression in R3 is derived in the Appendix. From
R3, it is clear that each member of the sequence for the
restricted problem is easily obtained in each iteration by using
the unrestricted solution and the information matrix.

3. THE EM ALGORITHM UNDER LINEAR
RESTRICTIONS ON PARAMETERS

3.1 Factorizing the Likelihood Under Parameter
Restrictions

Following the notation of Little and Rubin (1987), sup-
pose that we have a model for the complete-data Y with
associated density /(Y |0). We partition the complete-data
Yinto Y = (Yops, Ymis), Where Yy, represents the observed
part of Y and Y, denotes the missing part of Y. The dis-
tribution of the complete-data Y can be factored as

f(Y|0) =f( Yobs, Ymislo) =f( Yobslo)f( Ymisl Yous, 0).
So, based on (3), the log-likelihood can be written as
l(0| Yobs) = l(0| Y)- ll’lf( Ymisl Yobs, 0). 4)

Taking expectations of both sides of (4) over the distri-
bution of the missing data Y, given Y, and the current
estimate of 0, say 0V, gives /(0] Yo) = Q(0]6™)
— H(0|0), where

(3)

0(010™) = [ 1017)/(Yu| Y, ) @Yoy amd

HO10) = 101 Foisl Yt S o] Y0 ) Y.

The E step of the EM algorithm consists of finding the
conditional expectation of the complete-data log-likelihood
given the current parameter estimate and the observed data—
that is, to evaluate Q(0|0 ™). The M step consists of max-
imizing this conditional expectation over values of .

Now assume that for this incomplete data problem, the
parameters must satisfy a set of linear restrictions given by
(1). Consider a sequence of values obtained from an itera-
tive algorithm 0%, 0%, ..., 6%, ..., where 6%"""
=M (05{")) for some function M( )and where each member
of the sequence 0%’") should satisfy the linear restrictions (1).
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The difference in values of /(0g| Y.s) at successive iterates
is given by

10X | Yors) = 1(OR" | Yots)
= Q6™ 10%”) — (857 10%"))

— (HOFV 1057y — HOY 1657)).  (5)
From Jensen’s inequality, we have
HOZ 1057y < HOG” 1657). (6)
(m+l)

Thus it is a property of the EM algorithm that if 6 3
chosen to increase Q(0 | 0% R ) with respect to 6, this will en-
sure that the log-likelihood under the set of restrictions on
the parameters also increases.

3.2 The Restricted EM Algorithm

Let D'°Q(6¢"*1|9 (™) and DZQ(9*D]0 ™) be the first
and second partials of Q(8|8 ™) with respect to 8 evaluated
at 0 "D that is,

(m)
D10Q(0(m+l)|0(m)) = &(goo_) and
9=9 (m+1)
D20Q(9(rn+l)|9(m)) = ﬁQ(L"('"))
002 o=o(m+l)'

To find 0%""", which maximizes Q(8|0%") under the
linear restrictions (1), we use the restricted maximization
technique described in Section 2. That is, we use Newton—
Raphson 1terat10ns replacing Sy and I, by D'°Q(8|6%")
and —D?Q(0|6%"), and then apply the equatlon in R3.
This gives the (m + 1)th M-step solution, 0% R , which
maximizes Q(0|0§{")) under the restriction (1). Thus we
propose the following restricted EM algorithm:

The restricted EM algorithm (1)
E step:  Evaluate Q(0]0$™).
RM step:
1. [ < 0; use the starting value 0R(1) =
2. Find Sy = D"“Q(8z)|0%”) and Iy =
Q) |0R").
3. Find the restncted solution, 0R(,+1), from R2-R3 and
evaluate Q(()R(,H)IOR ) If Q(0R(1+1)|0R ) has reached its

maximum value as defined by a convergence criterion, then
1)
0(m+

05",
_DZO

- oR (+1)-

4. £ Q(Orq+1)|0%7) > Q(Or(y|0%7), then [ < [+ 1 and
go to Step 2. If not, then do step halving on A0y 41)[0r)],
where Ayqi)[0rpy] = OuasnlOray] — Or¢y and go to
Step 2.

For this algorithm, we will assume that the function to be
maximized is sufficiently well behaved and the starting value
is appropriately chosen so that the foregoing Newton-
Raphson algorithm modified by the step-halving procedure
converges to the global maximum. When we apply R3 to find
the restricted solution in the RM step, this restricted solution
may not increase Q(68|6%"). To guarantee increase of this
quantity, we propose a step-halving procedure applied to the
Newton-Raphson &stlmate In this procedure, if Q(0r¢+1)l
0("')) < bzl ) R ), then the intermediate value

Journal of the American Statistical Association, June 1995

0U(1+l)[0R(1)] = 0R(,) + AoU(l+l)[0R(l)] lIl R3 is replaced by
0R(1) + 2A0U(I+l)[0R(1)] If Q(0R(1+1)|0R ) is still less than
Q(()R(l)l()R ), then 0U(1+l)[0R(1)] in R3 is replaced by 0R(1)

+ $A0y¢+1[0r¢y]. This procedure continues until a value
of 0 satlsfymg the restriction is found such that Q(0|0("’)
> Q(0z | 0%"). Such a value of 6 is guaranteed to exist be-
cause of the local properties of Q(8|6%") when small incre-
ments in the intermediate value 8y¢41)[0r)] in R3 are taken
in the direction A0y 1)[0r¢)] from Oz¢). The theoretical
support for using this step-halving procedure is given in the
next section.

After convergence of the successive iterations, the con-
verged (m + 1)th RM step solution is denoted by 03{"“).
Because 05{"“) is a maximum point under the restriction,
we have Q(0%™" [6%7) > 0(0%” |8%™). Thus, prior to con-
vergence, the observed data log-likelihood is increased at each
step of the restricted EM algorithm (I). But the restricted
EM algorithm (I) has an unattractive aspect, because it in-
volves iterations within each EM iteration. Whereas the EM
algorithm chooses 8% to maximize Q(6|6%™) with respect
to 0, the GEM (generalized EM) algorithm (Dempster et al.
1977, Wu 1983) chooses any 0%"*" so that Q(8%"" |0%”)
is greater than Q(8%" |0%"). Thus, following the spirit of
GEM, it is not necessary to carry out a full Newton-Raphsorn
algorithm to converge in the RM step. One-step iteration of
the Newton-Raphson algorithm (Lange 1991) or several
steps of i 1terat10n that increase Q(0 | 0% R ) enough to be greater
than Q(0%”|60%™) can be used in the RM step.

When, as frequently occurs, there is a closed-form expres-
sion for the unrestricted M-step solution, then this solution
can be used in the RM step. Thus we propose a second re-
stricted EM algorithm that is computationally simpler, be-
cause it does not require any Newton-Raphson iteration.

The restricted EM algorithm (1I)
E step:  Evaluate Q(0]0%™).
RM step:

1. Find the unrestricted solution, 87, which has a closed
form, and calculate I, = —D2Q(6%" |0%7).

2. From R3, obtain the restricted solution, 8%; that is,
0% = 05 + Ig' A/(AIG'A)) L (a — AGF).

3. IfQ(oR|o""’)> Q0% 10%™), then 0% = 0%.
4i I)f not, then do step halving on A0, where A0F, = 0
-9 R’"

1

To find the restricted solution, 0;m+ ), this algo-
rithm uses the complete-data information matrix, Iy
—D200%™ 10%™), and the closed-form unrestricted M-
step solution, 03;. In the restrlcted EM algorithm (II), if the
procedure for obtaining 0%™*" does not increase the likeli-
hood, we suggest applying the step-halving procedure on
A0F. The theoretical support for using step halving in the
restricted EM (II) is based on the result in the next section.
One convenient aspect of the restricted EM algorithms
(I) and (II) is that they do not require complicated con-
strained maximization procedures to find the maximum
likelihood estimates. The restricted EM algorithms (I) and
(IT) we developed here can be easily carried out by using the
code of the complete-data information matrix in addition
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to the code of the usual EM algorithm without any further
calculation.

4. THEORETICAL PROPERTIES OF THE RESTRICTED
EM ALGORITHM

Because the restricted EM algorithms (I) and (II) are ad-
aptations of the EM and the GEM algorithms, they have
some of the same theoretical properties as the EM and the
GEM algorithms. We illustrate the theoretical properties of
algorithms (I) and (II) adapting the GEM algorithm results
of Dempster et al. (1977) and Wu (1983). Let Qx be the
parameter space under restrictions on the parameters. From
(5) and (6), we obtain the following theorem.

Theorem 1. Suppose that 09", m=0,1,2,...,isa
sequence of iterations of the restricted EM algorithms (I)
and (II); then we have

10T | Yops) = 10657 | Yops)

with equality if and only if Q8% |0%) = Q6% 160%™
and H(0"V10%”) = H(6%|6%™) almost everywhere.

Corollary 1. Suppose that %™, m=0, 1,2, ..., con-
verges to 0 , where [(0F | Yops) = 1(8] Yops) for all § € Qg in
the restricted EM algorithms (I) and (II); then

M(6%) = 0%,
O(M(BR)| Yobs) = Q(0% | Yos),
S(Ymis| Yobs, M(O;)) = f(Ymis| Yops, 0*).

Theorem 1 shows that /(0] Y.,) is nondecreasing in
each iteration of the restricted EM algorithms (I) and (II)
and is strictly increasing in any iteration such that
Q0% 16%”) > Q(8%”16%”). Corollary 1 says that for
each algorithm, the maximum likelihood estimate of # under
parameter restrictions obtained at convergence is a fixed
point in the restricted parameter space.

In the restricted EM algorithm (I), each M step involves
iterations, in which we find the unrestricted Newton-
Raphson step first and then the restricted solution. Also, we
use a step-halving procedure applied to the Newton—-Raphson
algorithm. The theoretical support for this updating scheme
is given by the following theorem and corollary. Let R(A)
be a subspace spanned by the rows of A and let N(A) be a
null space of A.

Theorem 2: Restricted EM (1). The incremental step
AOr+1) = Or+1y — Orqy, 1 = 1,2, . . . lies in a feasible direc-
tion defined by the linear restriction; that is, Afg¢+1)
€ N(A). Furthermore, prior to convergence, we have
D'°Q(0r )| 0%”) Abg a1y > 0.

Corollary 2: Restricted EM (1). Step halving applied to
the step Abyq+1)l0ray)] = Oua+nl0ray] — Orq) Provides a
.means of finding a value of  to ensure that Q(0|0r(,) in-
creases.

When we have a closed form for the unrestricted solution,
we can apply the restricted EM algorithm (II) directly. The
theoretical support for this updating scheme and the step-

and thus  [(M(0%)| Yops) = 1(0% | Yors),

and
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halving procedures are based on the following theorem and
corollary.

Theorem 3: Restricted EM (I1). The incremental step
A0k = 0% — 0% lies along a feasible direction defined by
the linear restriction; that is, A@% € N(A). Furthermore,
when || A8} | is small enough, prior to convergence, we have
DQ0% 1697y A0% > 0.

Corollary 3: Restricted EM (1I).  Step halving applied to
thestep A0, =0¢ — 03;'") provides a means of finding a value
of @ to ensure that Q(4| 05{")) increases.

In this article we propose step halving as a strategy to find
an acceptable step size. More effective strategies for adjusting
the step size have been discussed by Dennis and Schnabel
(1983, p. 126).

5. APPLICATION OF THE RESTRICTED EM
ALGORITHM TO HYPOTHESIS TESTS AND
CONFIDENCE INTERVALS

Illustrations of the restricted EM algorithm with various
types of linear restrictions on the parameters in a finite mix-
ture model for a specific application were given by Kim
(1991) and will be presented in a later work. In this section
we illustrate use of the algorithm to construct tést statistics -
and confidence intervals for parameters of interest. The con-
struction of test statistics and confidence intervals are im-
portant issues when the EM algorithm is applied. This is
because the EM algorithm does not automatically produce
the variance—covariance matrix for parameters. Therefore,
to test a null hypothesis or to construct confidence intervals
for parameters, additional steps are needed to find the
variance—covariance matrix ( Louis 1982; Meng and Rubin
1991).

Assume that we are interested in testing the following hy-
pothesis:

Hy: A9 = a, (7)

where A and a are defined in Section 2.1. Because the null
hypothesis is a statement about a linear combination of pa-
rameters, we can apply the restricted EM algorithm to esti-
mate 6} under the null hypothesis. The likelihood ratio test
statistic, to compare the full model to the reduced model, is
defined by

= =2(I(0 | Yobs) = H(OF | Yors)), (8)

where 07 is the maximum likelihood estimate under the full
model. Here r, under suitable regularity conditions, has an
asymptotic X2 distribution, with the degree of freedom de-

. termined by the difference in number of parameters between

the full model and the reduced model.

The profile likelihood confidence interval for a scalar
component of @ can be obtained directly from the likelihood
function by inverting the likelihood ratio test. Consider the
likelihood ratio test of the hypothesis Hy: §; = 6, where 0;
is the jth element of 6. This is a special case of the general
linear hypothesis (7). The likelihood ratio test statistic for
the null hypothesis is to reject at level « if r > X2, which
implies that the 100(1 — a)% likelihood-based confidence
interval for 0; is
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1
(00: (0% | Yons) — 1(OF | Yow) > — 5 xi,l) O

where 0} is the restricted EM solution under Hy: 0; = 6,.

Thus the procedure for finding the likelihood-based con-
fidence interval is to apply the restricted EM algorithm to
find 0% over a grid of values of 6, and plot the profile of the
log-relative likelihood. One reason to prefer this likelihood-
based approach compared to the Wald-type confidence in-
terval is that profile likelihood confidence interval for 6 is
not forced to be symmetric in situations in which the log-
likelihood function is asymmetric. If the log-likelihood is
quadratic in the parameter, then the Wald-type confidence
interval is asymptotically equivalent to the likelihood-based
confidence interval (Aitken, Anderson, Francis, and Hinde
1989).

6. EXAMPLES
6.1 A Variance Component Model

Variance component models are used when the factor lev-
els are not of primary interest in themselves but are consid-
ered a sample from a large population of factor levels. Table
1 shows Apex Enterprises data from Neter, Wasserman, and
Kutner (1985, p. 648). These data are from a study of the
evaluation ratings of potential employees by personnel of-
ficers. Five personnel officers were selected at random, and
four candidates were randomly chosen and evaluated by all
of the personnel officers. A single-factor variance component
model for these data is given by

Vi = b; + ey, i=1,2,...,1, j=1,2,...,J,

where b;’s are independent N(u, ¢3), e; are independent
N(0, ¢?), and b; and e; are independent random variables.

Dempster et al. (1977) and Little and Rubin (1987, p.
149) illustrated how the EM algorithm can be applied for
this model. The unknown parameters to be estimated are
0= (u, 03, 0%). Regarding the y; as observed data and treating
the unobserved random variables b,, b,, . . ., b; as missing
data, we can use the EM algorithm to obtain maximum like-
lihood estimates of 6. Let z = (y, b) be the complete data.
The complete-data likelihood can be expressed as the product
of two factors, the first corresponding to the distribution of
Vi, given b; and 0, and the second corresponding to the dis-
tribution of b;, given 0. The complete data log-likelihood is
given by

11 J ; i2 lI bl_ 2
o012 = -5 3 p U 2 G
=1

i=1 j=
I 1
- I—Jln(az) - Zln(ab) - —Jln(27r) - = 1n(27r)
The EM algorithm for this model is as follows:
E Step: Evaluate Q(0]0 ™) = E(1(6|z)]y, 8 ™).

In this step we need to evaluate the conditional distribution
of b;, given y. From Bayes’s theorem applied to the joint
distribution of b; and y, we obtain

Journal of the American Statistical Association, June 1995

Table 1. Apex Enterprises Data

Candidate (j)

Officer (i) 1 2 3 4
A 76 64 85 75
B 58 75 81 66
C 49 63 62 46
D 74 71 85 90
E 66 74 81 79

[b;]y, 0] ~ independent N(wu + (1 — w)y;., v),

where
1 J o2
Vi, = , =————, and v=o3w.
Vi J E Vi o2+ Joi b

M step: "D is given by

I
pmtD = 3 E(bily, 60),

i=1

I
(a3)m D) = 3 E((b; — w)?ly, 0™),
i=1
and

1 J

2 Z(yy

11]—1

(0,2)(m+l) —

+ E((7i. — b:)?ly, 0.

~ =
™M~

1

Now suppose that we are interested in the ratio of variances
o2 and o7—for example, we want to test Hy: 03 = .502. The
ratio of variances is useful for determining the balance between
the number of officers and candidates (Neter et al. 1985). The
restricted EM algorithm under H, will be straightforward. Be-
cause we have a closed form for the unrestricted solution, al-
gorithm (II) can be used with A = (0 1 —.5)anda = 01in (2).
The solutionis uk = 71.0, (¢3) % = 41.9278, (¢%) % = 83.8556.
The likelihood ratio test for Hy is r = —2(/(0% | Yobs)
— (0% Yys)) = —2(—75.1195 — (—75.0456)) = .1478. Be-
cause r = .1478 < 3.84, we cannot reject the null hypothesis.

To find confidence intervals, we apply the restricted EM
algorithm at a set of grid points for each parameter and cal-
culate the log-relative likelihood of (9). Figure 1 shows the
profile of the log-relative likelihood for each component of
the parameter §. We can see that the profile of the mean
looks symmetric, but that profiles of others are far from
symmetric. Table 2 shows the comparison between the
likelihood-based approach and the traditional least squares
method. In the least squares method, the confidence interval
for u is based on the ¢ distribution and those for others are
based on the x? distribution. Detailed calculations were
shown by Neter et al. (1985). Notice that likelihood-based
confidence intervals are narrower than those from the least
squares method, and the confidence intervals of the ratio of
two variances are substantially different. Moreover, the



Kim and Taylor: The Restricted EM Algorithm

o O
2% 2% /\
s 5
s ; a1
@ @
65 70 75 80 50 100 200
Mean Variance (within)
(a) (b)
o o
B ! 2o
0 100 200 300 o 1 2 3

Variance (between) Variance ratio

(© (d)

ah

0

-1

rofile

%

o |
V

0.0 0.4 0.8
Intra-class correlation

(e)

Figure 1. Profile Likelihoods of the Parameters in the Variance Com-
ponent Model: (a) ; (b) o% (c) a; (d) o3/d% (€) ob/(d} + &°).

likelihood-based approach produces confidence intervals for
the between variance, ¢, which is not available from the
least squares method.

6.2 Bivariate Normal Model

We assume that the data in Table 3 (Little and Rubin
1987, p. 101) follow a bivariate normal distribution, with
parameter 0 = (u;, 011, p2, 022, p).

Weseethat y;;and y;,,i=1,2,. .., 12 are fully observed,
but y;,,i=13,..., 18 are missing. The log-likelihood based
on the complete data is given by

1
161y) = =5 In(o11022(1 = p)) ~ T=o0

> é ((yil —m)? — 2 in = r) Wiz — m2)

o1 Vo o2

i=1

+ (Yo — #2)2) .
022

The E step is to find E(/(0]y)| Yous, 8 ). This requires
calculating
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TS =yn, T3 =yh ify;is observed,
and T3’ = E(yil yir, 077),

T3 = EGh 1y, 09) if ;, is missing.
Then,
L
2(1-p%
((yu —m)? 2p i — (T — 1)

011 Va” 02
N TS —2u, TS + u%)
022 ’

0(616) =~ In(o11022(1 — %) =

X3

i=1

The required conditional expectations are given by T

2
= By0.1 + B21.1¥;1 and T}z) = (B2o-1 + Bo11yin)* + 022.1,
where

(1)
Si2 T 2 vn

i2
Bor.1=—, B20.1 = — By ——,
S11 n n
2
_ $21
022.1 = 82—~ —
S11

The unrestricted M-step solution has a closed form. Let

n n n
1
51 =2 Vit 5= 2 TS, S =2 vh,

i=1 i=1 i=1

n n
_ (2) _ (1)
sn=2 T, S=2yuTi .

i=1 i=1

Then the new estimates are given by

(m+1) _ 51 (m+1) _ 52
- 2 -
n n
(m+1) _ S11 (m+1)y2 (m+1) _ 522 (m+1)y2
011 =——(m )%, 022 == — (2 )%,
(m+1)
p ) = _ 01
b
1/ (m+1) __(m+1)
O " 0;
(m+1) _ (m+1) (m+1)
where ¢ =Sp/n— [1%) .

We calculate the complete-data information matrix, I
= —D?Q(0™ |6 ™), and use the restricted EM algorithm
(II) to construct confidence intervals for the parameters.
Figure 2 shows the profiles of the log-relative likelihood of

Table 2. Point Estimates and 90% Confidence Intervals
for Apex Enterprises Data

* Likelihood-based Least squares
approach approach

Parameters Estimate (90% Cl) Estimate (90% Cl)
3 71.0 (64.69, 77.31) 71.0 (61.83, 80.17)
ot 55.1(7.80, 241.54) 73.6 (—, —)

a? 75.6 (43.77, 147.43) 75.6 (45.36, 165.20)
il .729 (.131, 2.466) .974 (.150, 6.947)
aif(o2 + o?) 422 (116, .712) .493 (.130, .873)
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Table 3. Bivariate Normal Data (n = 18)

Yin 8 6 1 22 14 17 18 24
Yio 59 58 56 53 50 45 43 42

19 23 26 40 4 4 5 6
39 38 30 27 *

10

+ o0

*
*
*

the five parameters. The profiles of the means, u, and u,,
look symmetric; in contrast, the profiles of ¢,;, 0,,, and p
are not symmetric. Table 4 shows the maximum likelihood
estimates and 95% confidence intervals from the likelihood-
based approach and from the Wald-type approach. The
Wald-type confidence intervals are based on the inverse of
the observed information matrix (Little and Rubin 1987, p.
106). For the means, the two confidence intervals are similar;
however, for the variances and correlation, these two con-
fidence intervals are not the same. The Wald-type confidence
intervals are symmetric around the points estimates, whereas
the likelihood-based approach allows asymmetric confidence
intervals. In particular, we notice that the profile of the cor-
relation is extremely asymmetric. The likelihood-based con-
fidence interval for p is (—.9508, —.7009), which is wider
than the Wald-type confidence interval (—1.0018, —.7882)
and does not include impossible values less than —1.

o o
ov ov
= =
o o
2% ao

(2] o |

] )

10 14 18 50 100 200

Mean (1) Variance (1)
(a) (b)
o o
o% o%
5 B
s &%
45 50 55 50 150 250
Mean (2) Variance (2)
(c) (d)
o
Q%
kS
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?
-0.9 -0.7
Correlation

(e)

Figure 2. Profile Likelihoods of the Parameters in the Bivariate Normal
Model: (a) uy; (b) o411, (C) po; (d) 022 (€) p.

7. DISCUSSION AND CONCLUSIONS

We have studied maximum likelihood estimation under
linear restrictions on parameters for incomplete-data prob-
lems. We have proposed the restricted EM algorithms (I)
and (II) for the estimation procedure. In both algorithms,
each step is easily updated by using the usual EM code and
the complete-data information matrix without further com-
plicated calculation.

We show that the likelihood is nondecreasing on each
iteration of the restricted EM algorithms (I) and (II), and
the sequence of values defined by the algorithm converges
to a fixed point. We also find that step halving is a convenient
modification of the step size when the RM step in the re-
stricted EM algorithm (I) consists of one or more iterates of
a Newton-Raphson algorithm. We show that a step-halving
procedure applied to the direction defined by the closed-
form solution in the restricted EM algorithm (II) would
guarantee that the complete-data log-likelihood in the RM
step would increase. To apply the step-halving procedure for
several parameters, one might try to reduce the step for each
parameter in turn; however, this would require more cal-
culation. Reducing the step size for all parameters by the
same factor is a simple procedure that will work.

To find the maximum likelihood estimate under the linear
restriction, an alternative approach is to maximize the ob-
served data log-likelihood under the restrictions. But this
requires a complicated constrained optimization routine. The
EM algorithm will tend to be more numerically stable, be-
cause the complete-data log-likelihood of the EM setting
typically has a simpler form than the observed-data log-
likelihood. Moreover, frequently we can find a closed-
form expression for the maximum of the complete-data
log-likelihood. Another possible approach is to apply the EM
algorithm after reparameterization. When the restriction is
just a simple linear combination of parameters, reparame-
terization might be easy; however, when the restriction is a
set of linear restrictions of parameters, this might be com-
plicated.

The most obvious application of the restricted EM algo-
rithm is to find the maximum likelihood estimate for models

Table 4. Point Estimates and Confidence Intervals
for Bivariate Normal Model

95% confidence intervals

Likelihood-based Wald type
Parameters MLE interval interval
I 14.722 (10.352, 19.092) (10.351, 19.094)
a1 89.534 (53.01, 174.71) (31.318, 147.750)
™ 49.333 (44.242, 54.986) (43.98, 54.69)
T2 114.695 (60.79, 243.99) (30.68, 198.71)
o —.895 (—.9508, —.7009) (—1.0018, —.7882)
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where there are linear restrictions on the parameters. Other
important applications of the restricted EM algorithm, which
have been the focus of this article, are to construct hypothesis
tests and confidence intervals for situtations where the EM
algorithm is used. We illustrated some applications of this
algorithm to obtain likelihood ratio tests and likelihood-based
confidence intervals. Other approaches to hypothesis testing
and construction of confidence intervals following the EM
algorithm have been described by Louis (1982), who sug-
gested a formula for the observed information matrix, and
Meng and Rubin (1991), who used the rate of convergence
of the EM algorithm. These asymptotic approaches are less
likely to be accurate if the log-likelihood is not a quadratic
function of the parameters.

A possible extension of the restricted EM algorithm is to
the situation where the restriction involves inequalities or is
nonlinear. We are currently investigating whether the algo-
rithm can be adapted to accommodate these types of con-
straints.

APPENDIX: DERIVATION AND PROOFS

Derivation of the Result R3

Let 0z, [ =0, 1, . . . be the sequences of the Newton-Raphson
iteration scheme. The (/ + 1)th element of the Newton—Raphson
sequence is obtained from the restricted score function and the
information matrix. From (2) and U2, we can derive

Ora+1y = Oray + IR'Sk = Ory + I (Sy + A'N)
=0rqy + 1" Su + ITA'N = Oy 0ry] + IT'A'N,
where I, and Sy are evaluated at 0z ¢). From (1), we have
a— A(Oyul0rp] + I5'A'N) = 0,
which implies
A = (AIZ'A") " (a — ABygsn0ry))-
Thus we have
Oras1y = QuasnlOroy] + 1P A/ (AT A) 7 (2 — AbBygan)[Oroy)])-

This result can also be obtained using the extension to general like-
lihood problems of the penalty function approach developed by
Nyquist (1991).

Proof of Theorem 2

Let Sy = D'°Q(8x()|0%"), Iy = —D*Q(8z()|0%”) and B
=I7'A’(AIZ'A’)~!. We have

Abrg+1) = Orr1y = Oray = Buaen[Oray]
+ I7A(AIFA) H(a — Abyg0ry]) — Oray
= (I - I7'A'(AIZ' A)T'A) Byl 0r ] — Ory)
= (1 - BA)Aygunfray] = (1 — BA)IG'Sy.

Because ABA = A, B is a generalized inverse of A and (I — BA)
is idempotent matrix. Thus (I — BA) is an orthogonal projector
onto N(A) along R(A). Therefore, we have AAOgq.y = A(I
— BA)Iy'Sy = 0, because A(I — BA) = 0, which implies Afg 1)
€ N(A). The next step is to show that prior to convergence, H
= D°Q(0r )| 0%") Abrgs1) = Su(I — BA)Ig'Sy > 0. Simple al-
gebra gives
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(I - BA)IY = I} — I/ A'(AIFA) AL .

Let F be p X d (d = p — Q) matrix of rank d such that AF = 0.
From Seber (1984, p. 536), if F is any p X d matrix of rank d (d
= p — Q) that satisfies AF = 0, then it can be shown that (I
—BA)I =F(F'IyF)"'F’' = G, where G is a positive semidefinite
with rank d. Let M; = {x:x'Gx = 0} and M, = {x: x'Gx > 0}.
We will show that prior to convergence, Sy € M,. To see this, in
the set M, we have x'Gx = x'F(F'I F)~'F’x = 0, which implies
x'F = 0, and hence x' is a linear combination of the rows of A,
because AF = 0 and rank(A) + rank(F) = p. Therefore, if Sy
€ M,, then we have Sy € R(A), which implies Afgg.1) = (I
— BA)I3'Sy = 0, indicating that 0g;, is a stationary point. Thus
we have shown that Sy € M, prior to convergence of the algorithm,
which implies Sy(I — BA)I3'Sy > 0.

Proof of Coroliary 2

Let 0y, [0r0y)] = Oy + tA0yenyl0rey], 0 < < 1 and Org+1),
be the restricted solution corresponding to 0y .+1,[0r¢)] obtained
from R3. Let Sy, Iy, and B be defined in the same way as in the
proof of Theorem 2. We assume that I, is positive definite. A Taylor
series expansion around ¢ = 0 of Q(0r¢+1),: |0r)) at Or ) gives

Q(Or+1),¢10ray)
= Q(oR(I)loR(I)) + tslu(l - BA)I?}ISU + O(tz). (A.l)

From the proof of Theorem 2, prior to convergence we have

w(I — BA)Ig!'Sy > 0. Therefore, if we perform step halving on
Abyi+1)[0ry], t is reduced, and, for small enough ¢, the positive
O(t) term will be the dominant term on the right side of (A.1).
Therefore, prior to convergence, we can find a positive ¢ such that
Q(Or+1).:10r@y) = Q(Or(1y| O omy) With equality holding only if we
are at convergence.

Proof of Theorem 3

Let Iy = —D?®Q(0%76%") and C = Iz'A’'(AIz'A")™". Sim-
ple algebra gives A0% = 0% — 0% = (I — CA)(0% — 0%
= (I — CA)AG}. Here (I — CA) is an orthogonal projector onto
N(A) along R(A). Thus we have AAO% = A(I — CA)A0} = 0,
because A(I — CA) = 0. Next we want to show that prior to con-
vergence, H = D°Q(0%"0%")' A0% > 0. Using similar arguments
to those in the proof of Theorem 2, we can write (I — CA)Ig!
= F(F'IyF)"'F' = G, where G is a positive semidefinite with rank
dand Fisap X d(d = p— Q) matrix of rank d such that AF = 0.
Because I is a positive definite, (I — CA) is positive semidefinite
with rank d. We will complete the proof that H > 0 by showing
that prior to convergence, we have (a) A8¢'A% > 0 and (b)
DQ(6%”10%7) A% > 0. Since (I — CA) is a positive semidefinite,
we have A0 A0% = A0/ (I — CA)AOY = 0. Using the same ar-
gument as the proof of Theorem 2, the equality gives us A67’
€ R(A), which implies A6% = (I — CA)A8Y; = 0 indicating 0% is
a stationary point; thus, (a) is proved. To see (b), we apply a
Taylor series expansion of Q(8%(0%”) at Q(6%"0%™). We
have Q(05°10%”) = Q(8%”10%") + D'Q(0%" 105"y A0%
— LA0F' 1,005 + O([|A07]3). Because I is positive definite and
Q(0%5°165”) > Q(0%" 10%"), we have D'°Q(0%" |03") 203 > 0
when [|A8%| is small enough to ignore O(||A0%]%).

Proof of Corollary 3

Let 03, = 0% + A8, 1et 0 < £ < 1, and let 8% , be the restricted
solution corresponding to 87, ;. Let Iy and C be defined in the same
way as in the proof of Theorem 3. We assume that I, is positive
df:ﬁ)nite. A Taylor series expansion around 7 = 0 of Q(0%,,|0%”) at
0%" gives
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0(8%.,16%") = 005" 16%”)
+tD0Q0%” |0%7) (1 — CA)AOE + O(¢2).

From the proof of Theorem 3, prior to convergence we have
DQ(6%”16%”) (1 — CA)A8% > 0. Thus step halving on A8} is
a means of finding a value of @ that ensures that Q(OIOS{”)) in-
creases.

[Received January 1993. Revised June 1994.]
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