- Main
Quantum simulation of open quantum systems in heavy-ion collisions
Published Web Location
https://doi.org/10.1103/physrevd.104.l051501Abstract
We present a framework to simulate the dynamics of hard probes such as heavy quarks or jets in a hot, strongly coupled quark-gluon plasma (QGP) on a quantum computer. Hard probes in the QGP can be treated as open quantum systems governed in the Markovian limit by the Lindblad equation. However, due to large computational costs, most current phenomenological calculations of hard probes evolving in the QGP use semiclassical approximations of the quantum evolution. Quantum computation can mitigate these costs and offers the potential for a fully quantum treatment with exponential speed-up over classical techniques. We report a simplified demonstration of our framework on IBM Q quantum devices and apply the random identity insertion method to account for cnot depolarization noise, in addition to measurement error mitigation. Our work demonstrates the feasibility of simulating open quantum systems on current and near-term quantum devices, which is of broad relevance to applications in nuclear physics, quantum information, and other fields.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-