Skip to main content
eScholarship
Open Access Publications from the University of California

Genetic variation among mainland and island populations of a native perennial grass used in restoration

  • Author(s): Hufford, KM
  • Mazer, SJ
  • Hodges, SA
  • et al.
Abstract

Genetic marker studies can assist restoration practice through selection of seed sources that conserve historical levels of gene diversity and population genetic differentiation. We examined genetic variation and structure within and among mainland and island populations of Elymus glaucus, a perennial bunchgrass species native to western North American grasslands that is targeted for grassland restoration. Island populations of E. glaucus represent sensitive sites and potentially distinctive seed sources for reintroduction, and little is known of their genetic composition. Genetic diversity and structure were estimated using amplified fragment length polymorphism markers for 21 populations and 416 individuals distributed across two coastal California mainland locations and three California Channel Islands. Eight primer combinations resulted in 166 markers, of which 165 (99.4 %) were polymorphic. The number of polymorphic bands was significantly greater among mainland populations relative to island sites, and locally common alleles were present for each sampled island and mainland location. Population structure was high (62.9 %), with most variation (55.8 %) distributed among populations, 7.1 % between mainland and island locations, and the remainder (37.1 %) within populations. Isolation by distance was only apparent among islands. Using marker data to recommend appropriate seed sources for restoration, E. glaucus seeds are best derived within islands with collections representing a large number of individuals from matching environments. Given the limited gene flow and prior evidence of adaptive divergence among populations of this species, regional collections are recommended in all cases to maintain diversity and to avoid long-distance introductions of highly differentiated plant material. © 2014 Published by Oxford University Press on behalf of the Annals of Botany Company.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View