Skip to main content
Download PDF
- Main
Effect of laser-dimpled titanium surfaces on attachment of epithelial-like cells and fibroblasts
Published Web Location
https://doi.org/10.4047/jap.2015.7.2.138Abstract
Purpose
The objective of this study was to conduct an in vitro comparative evaluation of polished and laserdimpled titanium (Ti) surfaces to determine whether either surface has an advantage in promoting the attachment of epithelial-like cells and fibroblast to Ti.Materials and methods
Forty-eight coin-shaped samples of commercially pure, grade 4 Ti plates were used in this study. These discs were cleaned to a surface roughness (Ra: roughness centerline average) of 180 nm by polishing and were divided into three groups: SM (n=16) had no dimples and served as the control, SM15 (n=16) had 5-µm dimples at 10-µm intervals, and SM30 (n=16) had 5-µm dimples at 25-µm intervals in a 2 × 4 mm(2) area at the center of the disc. Human gingival squamous cell carcinoma cells (YD-38) and human lung fibroblasts (MRC-5) were cultured and used in cell proliferation assays, adhesion assays, immunofluorescent staining of adhesion proteins, and morphological analysis by SEM. The data were analyzed statistically to determine the significance of differences.Results
The adhesion strength of epithelial cells was higher on Ti surfaces with 5-µm laser dimples than on polished Ti surfaces, while the adhesion of fibroblasts was not significantly changed by laser treatment of implant surfaces. However, epithelial cells and fibroblasts around the laser dimples appeared larger and showed increased expression of adhesion proteins.Conclusion
These findings demonstrate that laser dimpling may contribute to improving the periimplant soft tissue barrier. This study provided helpful information for developing the transmucosal surface of the abutment.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%