- Main
High-Photovoltage Silicon Nanowire for Biological Cofactor Production
Published Web Location
https://doi.org/10.1021/jacs.3c06243Abstract
Photocathodic conversion of NAD+ to NADH cofactor is a promising platform for activating redox biological catalysts and enzymatic synthesis using renewable solar energy. However, many photocathodes suffer from low photovoltage, consequently requiring a high cathodic bias for NADH production. Here, we report an n+p-type silicon nanowire (n+p-SiNW) photocathode having a photovoltage of 435 mV to drive energy-efficient NADH production. The enhanced band bending at the n+/p interface accounts for the high photovoltage, which conduces to a benchmark onset potential [0.393 V vs the reversible hydrogen electrode (VRHE)] for SiNW-based photocathodic NADH generation. In addition, the n+p-SiNW nanomaterial exhibits a Faradaic efficiency of 84.7% and a conversion rate of 1.63 μmol h-1 cm-1 at 0.2 VRHE, which is the lowest cathodic potential to achieve the maximum productivity among SiNW-sensitized cofactor production.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-