- Main
Statistical Hypothesis Testing versus Machine Learning Binary Classification: Distinctions and Guidelines
Published Web Location
https://doi.org/10.1016/j.patter.2020.100115Abstract
Making binary decisions is a common data analytical task in scientific research and industrial applications. In data sciences, there are two related but distinct strategies: hypothesis testing and binary classification. In practice, how to choose between these two strategies can be unclear and rather confusing. Here, we summarize key distinctions between these two strategies in three aspects and list five practical guidelines for data analysts to choose the appropriate strategy for specific analysis needs. We demonstrate the use of those guidelines in a cancer driver gene prediction example.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-