- Main
Calcium Binding Dramatically Stabilizes an Ancestral Crystallin Fold in Tunicate βγ-Crystallin
Published Web Location
https://doi.org/10.1021/acs.biochem.6b00937Abstract
The tunicate (Ciona intestinalis) βγ-crystallin represents an intermediate case between the calcium-binding proteins ancestral to the vertebrate βγ-crystallin fold and the vertebrate structural crystallins. Unlike the structural βγ-crystallins in the vertebrate eye lens, this βγ-crystallin strongly binds Ca2+. Furthermore, Ca2+ binding greatly stabilizes the protein, an effect that has previously been observed in microbial βγ-crystallins but not in those of vertebrates. This relationship between binding and protein stabilization makes the tunicate βγ-crystallin an interesting model for studying the evolution of the human βγ-crystallin. We also compare and contrast the binding sites of tunicate βγ-crystallin with those of other βγ-crystallins to develop hypotheses about the functional origin of the lack of Ca2+-binding sites in human crystallins.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-