Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

A Lyapunov theory demonstrating a fundamental limit on the speed of systems consolidation.

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862927/
No data is associated with this publication.
Creative Commons 'BY-ND' version 4.0 license
Abstract

The nervous system reorganizes memories from an early site to a late site, a commonly observed feature of learning and memory systems known as systems consolidation. Previous work has suggested learning rules by which consolidation may occur. Here, we provide conditions under which such rules are guaranteed to lead to stable convergence of learning and consolidation. We use the theory of Lyapunov functions, which enforces stability by requiring learning rules to decrease an energy-like (Lyapunov) function. We present the theory in the context of a simple circuit architecture motivated by classic models of learning in systems consolidation mediated by the cerebellum. Stability is only guaranteed if the learning rate in the late stage is not faster than the learning rate in the early stage. Further, the slower the learning rate at the late stage, the larger the perturbation the system can tolerate with a guarantee of stability. We provide intuition for this result by mapping the consolidation model to a damped driven oscillator system, and showing that the ratio of early-to late-stage learning rates in the consolidation model can be directly identified with the (square of the) oscillator's damping ratio. This work suggests the power of the Lyapunov approach to provide constraints on nervous system function.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item