THE MASS–METALLICITY RELATION FOR GIANT PLANETS
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

THE MASS–METALLICITY RELATION FOR GIANT PLANETS

Published Web Location

https://arxiv.org/abs/1511.07854
No data is associated with this publication.
Abstract

ABSTRACT: Exoplanet discoveries of recent years have provided a great deal of new data for studying the bulk compositions of giant planets. Here we identify 47 transiting giant planets (20 M ⊕ < M < 20 M J) whose stellar insolations are low enough (F * < 2 × 108 erg s−1 cm−2, or roughly T eff < 1000) that they are not affected by the hot-Jupiter radius inflation mechanism(s). We compute a set of new thermal and structural evolution models and use these models in comparison with properties of the 47 transiting planets (mass, radius, age) to determine their heavy element masses. A clear correlation emerges between the planetary heavy element mass M z and the total planet mass, approximately of the form . This finding is consistent with the core-accretion model of planet formation. We also study how stellar metallicity [Fe/H] affects planetary metal-enrichment and find a weaker correlation than has previously been reported from studies with smaller sample sizes. We confirm a strong relationship between the planetary metal-enrichment relative to the parent star Z planet/Z star and the planetary mass, but see no relation in Z planet/Z star with planet orbital properties or stellar mass. The large heavy element masses of many planets (>50 M ⊕) suggest significant amounts of heavy elements in H/He envelopes, rather than cores, such that metal-enriched giant planet atmospheres should be the rule. We also discuss a model of core-accretion planet formation in a one-dimensional disk and show that it agrees well with our derived relation between mass and Z planet/Z star.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item