- Main
Intraflagellar Transport
Abstract
It has been a decade since a novel form of microtubule (MT)-based motility, i.e., intraflagellar transport (IFT), was discovered in Chlamydomonas flagella. Subsequent research has supported the hypothesis that IFT is required for the assembly and maintenance of all cilia and flagella and that its underlying mechanism involves the transport of nonmembrane-bound macromolecular protein complexes (IFT particles) along axonemal MTs beneath the ciliary membrane. IFT requires the action of the anterograde kinesin-II motors and the retrograde IFT-dynein motors to transport IFT particles in opposite directions along the MT polymer lattice from the basal body to the tip of the axoneme and back again. A rich diversity of biological processes has been shown to depend upon IFT, including flagellar length control, cell swimming, mating and feeding, photoreception, animal development, sensory perception, chemosensory behavior, and lifespan control. These processes reflect the varied roles of cilia and flagella in motility and sensory signaling.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-