- Main
Identifying the landscape drivers of agricultural insecticide use leveraging evidence from 100,000 fields
Published Web Location
https://doi.org/10.1073/pnas.1620674114Abstract
Agricultural landscape intensification has enabled food production to meet growing demand. However, there are concerns that more simplified cropland with lower crop diversity, less noncrop habitat, and larger fields results in increased use of pesticides due to a lack of natural pest control and more homogeneous crop resources. Here, we use data on crop production and insecticide use from over 100,000 field-level observations from Kern County, California, encompassing the years 2005-2013 to test if crop diversity, field size, and cropland extent affect insecticide use in practice. Overall, we find that higher crop diversity does reduce insecticide use, but the relationship is strongly influenced by the differences in crop types between diverse and less diverse landscapes. Further, we find insecticide use increases with increasing field size. The effect of cropland extent is distance-dependent, with nearby cropland decreasing insecticide use, whereas cropland further away increases insecticide use. This refined spatial perspective provides unique understanding of how different components of landscape simplification influence insecticide use over space and for different crops. Our results indicate that neither the traditionally conceived "simplified" nor "complex" agricultural landscape is most beneficial to reducing insecticide inputs; reality is far more complex.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-