- Main
Model evidence for a significant source of secondary organic aerosol from isoprene
Abstract
We investigate how a recently suggested pathway for production of secondary organic aerosol (SOA) affects the consistency of simulated organic aerosol (OA) mass in a global three-dimensional model of oxidant-aerosol chemistry (GEOS-Chem) versus surface measurements from the interagency monitoring of protected visual environments (IMPROVE) network. Simulations in which isoprene oxidation products contribute to SOA formation, with a yield of 2.0% by mass reduce a model bias versus measured OA surface mass concentrations. The resultant increase in simulated OA mass concentrations during summer of 0.6-1.0 μg m-3 in the southeastern United States reduces the regional RMSE to 0.88 μg m-3 from 1.26 μg m-3. Spring and fall biases are also reduced, with little change in winter when isoprene emissions are negligible. © 2006 Elsevier Ltd. All rights reserved.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-