Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources

Abstract

We present a result of hourly simulation performed using hourly load data and the corresponding simulated output of wind and solar technologies distributed throughout the state of California. We examined how we could achieve very high-energy penetration from intermittent renewable system into the electricity grid. This study shows that the maximum threshold for the storage need is significantly less than the daily average demand. In the present study, we found that the approximate network energy storage is of the order of 186. GW. h/22. GW (approximately 22% of the average daily demands of California). Allowing energy dumping was shown to increase storage use, and by that way, increases grid penetration and reduces the required backup conventional capacity requirements. Using the 186. GW. h/22. GW storage and at 20% total energy loss, grid penetration was increased to approximately 85% of the annual demand of the year while also reducing the conventional backup capacity requirement to 35. GW. This capacity was sufficient to supply the year round hourly demand, including 59 GW peak demand, plus a distribution loss of about 5.3%. We conclude that designing an efficient and least cost grid may require the capability to capture diverse physical and operational policy scenarios of the future grid. © 2014 Elsevier Ltd.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View