Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Identification of Key Elements in Prostate Cancer for Ontology Building via a Multidisciplinary Consensus Agreement.

Abstract

Background

Clinical data collection related to prostate cancer (PCa) care is often unstructured or heterogeneous among providers, resulting in a high risk for ambiguity in its meaning when sharing or analyzing data. Ontologies, which are shareable formal (i.e., computable) representations of knowledge, can address these challenges by enabling machine-readable semantic interoperability. The purpose of this study was to identify PCa-specific key data elements (KDEs) for standardization in clinic and research.

Methods

A modified Delphi method using iterative online surveys was performed to report a consensus agreement on KDEs by a multidisciplinary panel of 39 PCa specialists. Data elements were divided into three themes in PCa and included (1) treatment-related toxicities (TRT), (2) patient-reported outcome measures (PROM), and (3) disease control metrics (DCM).

Results

The panel reached consensus on a thirty-item, two-tiered list of KDEs focusing mainly on urinary and rectal symptoms. The Expanded Prostate Cancer Index Composite (EPIC-26) questionnaire was considered most robust for PROM multi-domain monitoring, and granular KDEs were defined for DCM.

Conclusions

This expert consensus on PCa-specific KDEs has served as a foundation for a professional society-endorsed, publicly available operational ontology developed by the American Association of Physicists in Medicine (AAPM) Big Data Sub Committee (BDSC).

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View