Skip to main content
eScholarship
Open Access Publications from the University of California

Functional Hybrid Biomaterials based on Peptide-Polymer Conjugates for Nanomedicine

  • Author(s): Shu, Jessica
  • Advisor(s): Xu, Ting
  • et al.
Abstract

The focus of this dissertation is the design, synthesis and characterization of hybrid functional biomaterials based on peptide-polymer conjugates for nanomedicine. Generating synthetic materials with properties comparable to or superior than those found in nature has been a "holy grail" for the materials community. Man-made materials are still rather simplistic when compared to the chemical and structural complexity of a cell. Peptide-polymer conjugates have the potential to combine the advantages of the biological and synthetic worlds- that is they can combine the precise chemical structure and diverse functionality of biomolecules with the stability and processibility of synthetic polymers. As a new family of soft matter, they may lead to materials with novel properties that have yet to be realized with either of the components alone.

In order for peptide-polymer conjugates to reach their full potential as useful materials, the structure and function of the peptide should be maintained upon polymer conjugation. The success in achieving desirable, functional assemblies relies on fundamentally understanding the interactions between each building block and delicately balancing and manipulating these interactions to achieve targeted assemblies without interfering with designed structures and functionalities. Such fundamental studies of peptide-polymer interactions were investigated as the nature of the polymer (hydrophilic vs. hydrophobic) and the site of its conjugation (end-conjugation vs. side-conjugation) were varied.

The fundamental knowledge gained was then applied to the design of amphiphiles that self-assemble to form stable functional micelles. The micelles exhibited exceptional monodispersity and long-term stability, which is atypical of self-assembled systems. Thus such micelles based on amphiphilic peptide-polymer conjugates may meet many current demands in nanomedicine, in particular for drug delivery of hydrophobic anti-cancer therapeutics.

Lastly, biological evaluations were performed to investigate the potential of micelles as drug delivery vehicles. In vitro cell studies demonstrated that the micelles can be used as a delivery vehicle to tailor the cellular uptake, time release, and intracellular trafficking of drugs. In vivo biodistribution and pharmacokinetic experiments showed long blood circulation. This work demonstrates that peptide-polymer conjugates can be used as building blocks to generate hierarchical functional nanostructures with a wide range of applications, only one of which is drug delivery.

Main Content
Current View