- Main
Low-Cost and Scalable Material Designs and Processes for Next-Generation Lithium-Ion Battery Anodes
- Baucom, Jesse Adam
- Advisor(s): Lu, Yunfeng
Abstract
Modern human civilization depends on the production and utilization of vast quantities of energy. While innovations in technology are generally met with applause, discoveries over the potential catastrophic impacts of our current ways of generating energy on our climate and society have prompted worldwide efforts to mitigate these issues. Although environmentally-friendly and sustainable methods for electricity generation such as solar photovoltaic energy hold promise for solving our energy issues, a complete shift towards renewable energy would require the development of grid-scale energy storage systems due to the intermittent nature of such technology. In addition, the automotive industry is undergoing a complete transformation to electrification in efforts to reduce the environmental impact of vehicles and comply with increasingly stringent regulations, representing yet another urgent need for high-performance energy storage systems.
Of all energy storage technologies for potentially enabling grid storage and electric vehicles, lithium-ion batteries are of particular interest due to their rechargeability, high energy and power densities, and energy efficiency. Although lithium-ion batteries are now widely used for a variety of applications, their prohibitively high cost has prevented their application in these crucial technologies. For specific applications such as electric vehicles and portable electronics, lithium-ion batteries have yet to achieve the energy and power density requirements necessary, posing additional barriers. On top of these obstacles, the commercial viability of lithium-ion batteries for these applications depends on the ability to scale up the production processes to satisfy the market need, creating yet another challenge for solving these important issues.
While the development of high-capacity anode materials for lithium-ion batteries is a promising route towards enabling these applications, many of the novel designs for such materials are prohibitively expensive or difficult to scale, preventing them from achieving widespread market adoption. In this dissertation, we describe novel materials and processes for producing three high-capacity anode materials of great industry and academic interest: graphene, silicon, and lithium metal. First, we present a novel method for induction heating-mediated synthesis of freestanding anodes for improving the scalability of traditional chemical vapor deposition processes through reduced process downtimes while enabling higher energy and volumetric densities in lithium-ion batteries by virtue of the freestanding nature of the electrode design, reducing the mass and volume of electrochemically-inactive components. Next, we describe a method for the production of silicon/PVA/graphite composite anodes with long cycling life through the use of a 1-step ball milling method utilizing low-cost precursors for scalable production of high-capacity anode materials. Finally, we reveal a design for air-stable lithium metal hosts fabricated from a scalable powder metallurgic approach, which allows for the fabrication of high-performance lithium metal batteries compatible with existing infrastructure, circumventing the need for a high-cost assembly in an inert atmosphere.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-