- Main
Coronary Plaque Characterization with T1-weighted MRI and Near-Infrared Spectroscopy to Predict Periprocedural Myocardial Injury.
- Isodono, Koji;
- Matsumoto, Hidenari;
- Li, Debiao;
- Slomka, Piotr;
- Dey, Damini;
- Cadet, Sebastien;
- Irie, Daisuke;
- Higuchi, Satoshi;
- Tanisawa, Hiroki;
- Nakazawa, Motoki;
- Komori, Yoshiaki;
- Ohya, Hidefumi;
- Kitamura, Ryoji;
- Hondera, Tetsuichi;
- Sato, Ikumi;
- Lee, Hsu-Lei;
- Christodoulou, Anthony;
- Xie, Yibin;
- Shinke, Toshiro
- et al.
Published Web Location
https://doi.org/10.1148/ryct.230339Abstract
Purpose To clarify the predominant causative plaque constituent for periprocedural myocardial injury (PMI) following percutaneous coronary intervention: (a) erythrocyte-derived materials, indicated by a high plaque-to-myocardium signal intensity ratio (PMR) at coronary atherosclerosis T1-weighted characterization (CATCH) MRI, or (b) lipids, represented by a high maximum 4-mm lipid core burden index (maxLCBI4 mm) at near-infrared spectroscopy intravascular US (NIRS-IVUS). Materials and Methods This retrospective study included consecutive patients who underwent CATCH MRI before elective NIRS-IVUS-guided percutaneous coronary intervention at two facilities. PMI was defined as post-percutaneous coronary intervention troponin T values greater than five times the upper reference limit. Multivariable analysis was performed to identify predictors of PMI. Finally, the predictive capabilities of MRI, NIRS-IVUS, and their combination were compared. Results A total of 103 lesions from 103 patients (median age, 72 years [IQR, 64-78]; 78 male patients) were included. PMI occurred in 36 lesions. In multivariable analysis, PMR emerged as the strongest predictor (P = .001), whereas maxLCBI4 mm was not a significant predictor (P = .07). When PMR was excluded from the analysis, maxLCBI4 mm emerged as the sole independent predictor (P = .02). The combination of MRI and NIRS-IVUS yielded the largest area under the receiver operating curve (0.86 [95% CI: 0.64, 0.83]), surpassing that of NIRS-IVUS alone (0.75 [95% CI: 0.64, 0.83]; P = .02) or MRI alone (0.80 [95% CI: 0.68, 0.88]; P = .30). Conclusion Erythrocyte-derived materials in plaques, represented by a high PMR at CATCH MRI, were strongly associated with PMI independent of lipids. MRI may play a crucial role in predicting PMI by offering unique pathologic insights into plaques, distinct from those provided by NIRS. Keywords: Coronary Plaque, Periprocedural Myocardial Injury, MRI, Near-Infrared Spectroscopy Intravascular US Supplemental material is available for this article. © RSNA, 2024.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-