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ABSTRACT OF THE DISSERTATION

Electronic, Vibrational and Thermoelectric Properties of Two-Dimensional
Materials

by

Darshana Wickramaratne

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2015

Dr. Roger Lake, Chairperson

The discovery of graphene’s unique electronic and thermal properties has moti-

vated the search for new two-dimensional materials. Examples of these materials

include the layered two-dimensional transition metal dichalcogenides (TMDC) and

metal mono-chalcogenides. The properties of the TMDCs (eg. MoS2, WS2, TaS2,

TaSe2) and the metal mono-chalcogenides (eg. GaSe, InSe, SnS) are diverse - ranging

from semiconducting, semi-metallic and metallic. Many of these materials exhibit

strongly correlated phenomena and exotic collective states such as exciton conden-

sates, charge density waves, Lifshitz transitions and superconductivity. These prop-

erties change as the film thickness is reduced down to a few monolayers.

We use first-principles simulations to discuss changes in the electronic and the

vibrational properties of these materials as the film thickness evolves from a single

atomic monolayer to the bulk limit. In the semiconducting TMDCs (MoS2, MoSe2,

WS2 and WSe2) and monochalcogenides (GaS, GaSe, InS and InSe) we show con-

fining these materials to their monolayer limit introduces large band degeneracies or

non-parabolic features in the electronic structure. These changes in the electronic
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structure results in increases in the density of states and the number of conducting

modes. Our first-principles simulations combined with a Landauer approach show

these changes can lead to large enhancements up to an order of magnitude in the

thermoelectric performance of these materials when compared to their bulk struc-

ture.

Few monolayers of the TMDCs can be misoriented with respect to each other due

to the weak van-der-Waals (vdW) force at the interface of two monolayers. Misorien-

tation of the bilayer semiconducting TMDCs increases the interlayer van-der-Waals

gap distance, reduces the interlayer coupling and leads to an increase in the magnitude

of the indirect bandgap by up to 100 meV compared to the registered bilayer.

In the semi-metallic and metallic TMDC compounds (TiSe2, TaS2, TaSe2) a phase

transition to a charge density wave (CDW) ground state occurs at a temperature that

is unique to each material. Confining these materials to a single monolayer or few-

monolayers can increase or decrease their CDW transition temperature and change

the magnitude of the CDW energy gap. We show the low energy Raman modes

observed in 1T-TaSe2 and 1T-TaS2 in their CDW ground state can emerge from zone

folded phonons due to the reconstruction of the lattice in the bulk and monolayer

structures. In 1T-TiSe2 the driving mechanism of the CDW is excitonic condensation.

We show the excitonic gap of the monolayer and bilayer structures can increase by

up to a factor of 3 compared to the excitonic gap of the bulk structure. The results

from the studies conducted on these materials are currently hosted on an open-access

repository sponsored by the University of California Curation Center (UC3).
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Chapter 1

Rationale

1.1 Introduction

The continued down-scaling of metal oxide semiconductor (MOS) field effect tran-

sistors (MOSFETs) in accordance with Moore’s Law has enabled increasingly faster,

highly-functional and low form factor electronic devices. A number of projections have

suggested the ultimate limit silicon MOSFETs can be scaled down to is 5 nm channel

lengths. [17–19] One of the solutions to the continued downscaling of transistors is

the use of alternative channel materials to scale beyond the technology roadmap of

5nm. Two dimensional van-der-Waal (vdW) materials have been invoked as a possible

solution to overcome the scaling challenges faced by using silicon MOSFETs. [18]

Graphene is the prototypical two dimensional vdW material that has served as

a platform to study a variety of fundamental physics and device applications at the

atomic two dimensional limit. This has also spurred research into a variety of other

two dimensional layered materials beyond graphene. Each of these two dimensional

materials has unique electronic and vibrational properties that quantitatively change

when their film thickness is reduced to a single monolayer. While reducing dimen-
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sionality can either enhance or reduce the lattice thermal conductivity and electrical

conductivity of each material, real applications that utilize these properties require

a finite cross section of material. We would like to enjoy the benefits of the spe-

cial properties of an atomically thin two dimensional material and also have a finite

cross section of material to transport a useful amount of heat or current. Hence,

understanding the electronic, vibrational and thermoelectric properties of these two

dimensional materials as their film thickness changes from the bulk to the monolayer

limit is one of the primary objectives of this work. In the following sections we briefly

introduce the different materials studied and the different phenomena investigated in

this work and explain the formalism in later chapters.

1.1.1 Two-dimensional layered metal chalcogenides

The two dimensional transition metal dichalcogenides and metal monochalcogenides

are an attractive candidate family of materials that may provide a solution to the

search for alternative channel materials for CMOS devices. Two dimensional materi-

als have been shown both experimentally and theoretically to have electronic, optical,

mechanical and thermal properties that are superior to the behavior of these materials

in their bulk form. [20, 21] The self passivated surfaces of these materials also makes

it feasible to integrate heterostructures using different two dimensional materials and

overcome limitations of dangling bonds associated with the growth and integration

of unpassivated surfaces. [22, 23]

Beyond graphene, examples of new layered materials that have been discov-

ered include the transition metal dichalcogenides [20], metal monochalcogenides [24],

hexagonal-boron nitride [25], lead halides [26], bismuth and antimony selenides and

tellurides [11], black phosphorus [27], transition metal carbides (MXene) [28] and the
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group IV analogues of graphene (silicene and germanene) [29,30] Illustrated below is

a panel of some of the materials that will be investigated in this work. Each of these

Bilayer graphene Bi2Se3, Bi2Te3 Group V and Group VI TMDCs (MX2)

III-VI monochalcogenides:

GaS, GaSe, InS, InSe
Black Phosphorus Bi(111)

Figure 1.1: Range of two dimensional layered materials that are explored in this
study. Their properties vary based on the choice of element from the periodic table
and the registry between individual atomic planes. The image of the periodic table
is reproduced with permission from [16] ©[2013] Nature Chemistry

materials listed above and illustrated in Figure 1.1 exhibit a wide range of structural,

electronic, vibrational, optical and mechanical phenomena.

Studies of the transition metal dichalcogenides (TMDCs) and metal monochalco-

genides predates the research that was conducted on graphene. Studies on these

layered metal chalcogenide (LMC) materials can be found dating back to the 1950s.

The first report on earth abundant MoS2 dates back to 1953 with intercalation studies

on bulk MoS2. [31] The metallic and semi-metallic LMCs were the focus of several

studies in the 1970s with the identification of superconducting and charge density

wave phenomena in these materials. [15,32] Intercalation studies were also conducted

to understand the potential for using the layered dichalcogenides as materials for

energy storage. [33] These experiments were complemented by the emergence of elec-

tronic structure calculations of a number of LMC compounds. [34] In 2004, the first
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top gated thin film WSe2 transistor was fabricated, with the proposal of applying

LMCs for flexible electronics. [35] This was followed by transport studies on MoS2

and TaS2 nanopatches by Ayari et al. in 2007. [36] The first experimental investiga-

tions of transport in monolayer MoS2 were published in 2010 by Andras Kis et al. [37]

This was followed by the first demonstration of strong enhancement in the photolu-

minesence by Galli et. al and Heinz et. al when MoS2 was reduced in thickness down

to a single monolayer. [38, 39] These initial results on monolayer MoS2 have resulted

in a continuous increase in the number of publications that focus on the study of the

layered metal chalcogenides and their various heterostructures.

The crystal structure and bonding in the layered metal chalcogenides is character-

ized by strong covalent or ionic bonding along the basal plane and weak bonding out

of plane where the individual atomic planes are held together by weak van-der-Waal

forces. The weak forces along the c-axis of this class of materials allows individual lay-

ers of these materials to be separated with relative ease either through mechanical or

liquid exfoliation. The senstivity of the electronic structure of this class of materials

to interlayer coupling means the properties of these materials qualitatively changes

as their thickness approaches the monolayer limit. A number of other structural de-

grees of freedom can also alter the electronic properties of the layered materials. The

layered materials can exist in a number of different stacking orders due to the weak

forces between the individual monolayers. The different stacking configurations are a

host to a wide variety of electronic properties.

In the transition metal dichalcogenides, the different stacking orders can alter the

crystal field splitting of the transition metal d-orbital thus giving rise to different d-

orbital physics. [40] For example in the TMDCs, the d-bands of the transition metal

are split by the crystal field based on their coordination environment with respect to

the chalcogen atoms. When the transition metal atoms are octahedrally coordinated
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the d bands split into a eg (dz
z, dx2−y2) and t2g (dyz, dxy, dxz) manifold. When the

transition metal atom has trigonal prismatic coordination the the d-bands split into

three manifolds of A1’ (dz2), E’ (dx2−y2 , dxy) and E“(dxz, dyz). This simple ionic

picture provides a qualitative understanding for the range of electronic properties

observed in the TMDCs. The different degrees of structural freedom and the choice

of metal and chalcogen atom give rise to different electronic and vibrational properties

and phenomena in this family of materials. The changes in the electronic structure

and phonon dispersions for a range of layered metal chalcogenide materials is studied

using ab-initio calculations as these materials are confined from their bulk structure

to a single monolayer. The results from these calculations are used to determine the

application of these materials as thermoelectrics (1.1.2) and to understand the charge

density wave phenomena that is observed in the metallic and semi-metallic TMDCs

(1.1.3).

1.1.2 Thermoelectrics

One approach to improve the energy storage and conversion capabilities of a mate-

rial has been to rely on nanostructuring and quantum confinement induced effects.

Thermoelectric materials are a class of materials that may offer a possible solution to

this endeavour. When a temperature gradient is maintained across a thermoelectric

material, an electrostatic potential develops across the material which can be used to

do work. This conversion of heat to electric potential is the Seebeck coefficient. In

the state of art thermoelectric materials such as Bi2Te3 the maximum Seebeck coeffi-

cient is often ∼200µVK−1. [41] The performance of a material as a thermoelectric is
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determined by its thermoelectric figure-of-merit, ZT. ZT is defined as

ZT =
S2σT

κeκl
(1.1)

where S is the Seebeck coefficient, σ is the electrical conductivity, κe is the contribu-

tion of the electrons to the thermal conductivity, κl is the lattice thermal conductivity

and T is the temperature at which the figure-of-merit is calculated. An ideal thermo-

electric would thus have large electrical conductivity and low thermal conductivity.

However these are competing effects and hence a considerable amount of effort is

spent optimizing materials to maximize ZT or identifying materials where the de-

sired properties are intrinsically present within the material. [42]

Motivated by the Hicks and Dresslhaus proposal that the thermoelectric figure of

merit can be enhanced in quantum well superlattices [43], there have been a number

of studies focused on identifying appropriate thin film thermoelectric materials. One

of the most widely used thermoelectric material, Bi2Te3, is also a van-der-Waal mate-

rial. Recent theoretical studies have predicted a single quintuple layer of Bi2Te3 can

have a ZT up to 7 at room temperature. [44,45] To understand if this large enhance-

ment in ZT due to confinement translates to other layered materials, we study the

thermoelectric properties in a variety of van-der-Waal materials as a function of film

thickness. In these materials we investigate the influence of higher band degeneracy

and non-parabolic bands on the thermoelectric response of each material. The elec-

tronic structure for each material computed using density functional theory is used

to determine the thermoelectric response of each material.

6



1.1.3 Charge Density Waves

A charge density wave (CDW) is a phase transition that spontaneously occurs in

metallic and semi-metallic materials. In a CDW, metallic electrons condense into a

collective ground state with a periodic modulation of the charge density resulting in

a single-particle energy gap 2∆ at the Fermi surface. Electrical conductors with a

quasi-one dimensional structure were first predicted to undergo a phase transition to

a charge density wave state. The appearance of a CDW state in quasi-1D materials is

driven by a Peierls instability. [46] The lattice of atoms undergoes a periodic distortion

and the electrons condense into a ground state with a periodic modulation of the

charge density. Figure 1.2 illustrates the formation of a charge density wave in a one

dimensional lattice.

Figure 1.2: Illustration of the formation of the charge-density wave (CDW). Some
materials (a) can reduce their energy by developing CDW as shown in (b).The charge-
density wave is the couple modulation of the conduction electron density and the
atomic positions. The modulations produce an energy gap 2∆ at the Fermi surface.

The presence of charge density waves have also been observed and characterized

in a number of metallic two dimensional Group IV and Group V transition metal
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dichalcogenides. The commensurate CDW transition in this family of materials re-

sults in a periodic distortion of the lattice and either a partial or complete gapping

of the Fermi surface. The charge density wave transition in these materials is charac-

terized by a unique transition temperature and a driving mechanism that is unique

to each material. For example, it was suggested that CDW transition in TiSe2 is

driven by a transition to an excitonic insulating phase [47]. In 1T-TaS2 and 1T-

TaSe2 ARPES experiments have shown partial gapping of the Fermi surface but the

origin of the transition is still a subject of debate [48, 49]. In 2H-NbSe2 the Fermi

surface nesting was recently questioned as the origin of the CDW [50] while the origin

of the exact mechanism still remains a subject of debate.

The CDW transition that occurs in these materials results in experimental signa-

tures that are unique to each material. In the commensurate CDW transition, the

periodic distortion of the lattice results in a number of new low energy modes in

the Raman spectra. [51] In 1T-TaS2 and 1T-TiSe2 the gapped Fermi surface in the

commensurate CDW phase gives rise to sharp increases in resistivity at the commen-

surate CDW transition temperature. [52,53] Using ab-initio calculations we calculate

the electronic properties and vibrational properties of 1T-TaSe2 and 1T-TiSe2. The

results of these simulations are used to support the experimental Raman spectroscopy

results of our collaborators and to understand the driving mechanism of the CDW

transition in 1T-TiSe2 as a function of film thickness.

1.2 Objective

The adoption and use of two dimensional layered materials in present day technology

is still in its nascent stage. The electronic and vibrational properties of the layered

metal chalcogenides as the film thickness changes from bulk to a single monolayer
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is currently not known for a number of these materials. Currently, most studies are

focused on either the bulk properties of these materials or the properties of a single

monolayer. Extrapolating the electronic, optical and thermal properties based on

studies at these two extremes may provide qualitatively incorrect trends and results.

Hence, the objectives of this dissertation are:

1. Understand quantitative changes in the electronic structure of the Group VI

semiconducting transition metal dichalcogenides MoS2, MoSe2, WS2 and WSe2

as the film thickness is reduced from bulk to a single monolayer.

2. Determine the impact of changes in the electronic structure of the Group VI

TMDCs as a function of film thickness on the thermoelectric properties of each

material

3. Understand changes in the Fermi ring that exists at the band extrema in a

number of van-der-Waal materials as a function of film thickness. Determine

the impact of the Fermi ring on the thermoelectric properties of a material and

compare to the thermoelectric response of a parabolic band material.

4. Understand changes in the electronic and vibrational properties of the bulk and

monolayer Group IV and Group V TMDCs due to the periodic lattice distortion

that follows a commensurate CDW transition

1.3 Layout

The rest of this dissertation is organized as follows. In Chapter 2 a background of

density functional theory (DFT) and the different approaches used with DFT is pre-

sented. In Chapter 3 a systematic study of the electronic properties of MoS2, MoSe2,
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WS2 and WSe2 as the film thickness is confined from bulk to a single monolayer is

presented. The thermoelectric properties as the film thickness transitions from bulk

to monolayer for four of the TMDCs is also discussed extensively in Chapter 3 In

Chapter 4 the electronic properties of misoriented bilayers of MoS2, MoSe2, WS2 and

WSe2 is studied. In Chapter 5 we extend our study of the electronic and thermo-

electric properties of van-der-Waal materials to study vdW materials that exhibit a

Fermi ring in their band extrema. The evolution of this Fermi ring as a function of

film thickness and the impact on the thermoelectric performance of these materials

is studied in detail. In Chapter 6 we study the electronic and vibrational properties

of the metallic transition metal dichalcogenides which exhibit a charge density wave

transition. Experimental Raman spectroscopy has shown the the lattice distortion

that follows a charge density wave transition results in the occurence of a number of

low energy zone folded modes. We study the origin of these zone folded modes for two

metallic TMDC compounds in their bulk and monolayer limits. Finally in Chapter 7

we summarize the key findings of this thesis. In Appendix A we summarize additional

calculation results of the Group VI TMDCs (MoS2, MoSe2, WS2 and WSe2 ) obtained

using hybrid functional DFT calculations. In Appendix C the MATLAB code used

to numerically calculate the density of modes from the ab-initio calculations of the

band structure of a material is given.
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Chapter 2

Theoretical Methods

2.1 Density Functional Theory

Density functional theory is one of the most widely used methods to describe the

properties of condensed matter systems. In addition to being applied to studies of

standard bulk materials, DFT has been successfully applied to study complex mate-

rials and structures such as molecules, proteins, surfaces and their heterostructures.

The standard quantum-mechanical approach to model the electronic properties of a

many-electron problem (such as the systems listed above) requires a Hamiltonian for

the given system. For a system of electrons and nuclei, the Hamiltonian (H) will be:

H = T̂ + V̂ext + V̂int + Enn (2.1)

where T̂ is the electronic kinetic energy, ˆVext is the potential due to the electron-

nuclei interactions, ˆVint is the potential due to electron-electron interactions and Enn

is the interaction between nuclei. Density functional theory allows this many-electron

wavefunction problem to be solved in practice. The basis of density functional the-
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ory are the Hohenberg-Kohn (HK) theorems. [54] The first HK theorem proves the

ground-state of a many-electron system can be uniquely determined by the electron

density of the system. The second HK theory states the total ground-state energy of

such a many-electron system is a functional of the ground-state electron density. For

a given ˆVext, the total energy functional is:

E[n] = T [n] + Eint[n] +

∫
d3rVext(r)n(r) + Enn (2.2)

where T[n] is the kinetic energy, Eint[n] is the interaction energy of the electrons, Vext

is the external potential acting on the electrons from the nuclei.

The approach outlined by the Kohn-Sham approach [55] made the HK theorems

computationally tractable. The Kohn-Sham approaches replaces the many-body elec-

tron wave function with a non-interacting system in an effective potential that has

a ground state density that is identical to that of the many body interacting sys-

tem. The effective Hamiltonian of the non-interacting particles in the Kohn-Sham is

defined as:

VKS(r) = Vext(r) + VH(r) + VXC(r) (2.3)

where Vext is the external potential acting on the electrons due to the nuclei defined

as:

Vext(r) =
∑
n

−Zne
|rn − re|

(2.4)

where Zn is the nuclear charge and rn is the position of the nuclei. VH(r) is the

Hartree potential given by:

VH =

∫
ρ(r)

|r − re
dr (2.5)

which is just the Coulomb interaction between electrons. VXC(r) is the exchange-

correlation potential which includes electron-electron interactions not included in the
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Hartree potential. Two common approaches to approximate the exchange correlation

potential include the Local Density Approximation (LDA) and the Generalized Gra-

dient Approximation (GGA). The main rationale behind these approximations is that

for electron densities within a solid, exchange and correlation effects occur on a short

length scale. Hence, LDA and GGA approximations of DFT accurately describe the

properties of materials that resemble a homogeneous electron gas.

Approximating the exchange correlation potential using either the LDA or GGA

approximation has shortcomings when describing the properties of semiconducting

materials. The most well known problem is the band gaps of semiconductors and

insulators are significantly underestimated by LDA and GGA calculations. For a

number of semiconducting materials, LDA or GGA calculations can predict metallic

behavior as well. In addition to incorrect descriptions of bandgaps, LDA and GGA

calculations can also lead to inaccurate description of band-offsets, lattice constants

and effective masses. These shortcomings can affect quantitative and qualitative

predictions of properties such as the thermoelectric response or transistor transfer

characteristics that use ab-initio calculations of a semiconducting material at the LDA

or GGA level. To overcome this limitation more advanced theoretical approaches have

been used in DFT calculations to overcome the band-gap problem. The approach used

in this study is the inclusion of exact-exchange in the exchange-correlation functional

using hybrid functionals, specifically the Heyd-Scuseria-Ernzerhof (HSE) functional.

2.1.1 Hybrid functional DFT calculations

Recent advances in density functional theory have led to the development of methods

that overcome the underestimated bandgap often predicted using standard exchange

correlation approximations such as LDA or GGA. One common approach is the use of
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range separated hybrid functionals which include an amount of exact exchange within

the exchange-correlation approximation. In this work we use the hybrid function

implemented by Heyd, Scuseria and Ernerhof (HSE) to correct for the underestimated

bandgaps and band offsets predicted by our GGA level calculations.

Hybrid functionals first proposed by Axel Becke in 1993 were proposed to mix

either a LDA or GGA DFT calculation with an orbital dependent Hartree-Fock cal-

culation. In the Hartree-Fock calculation, the many-electron wave function of the

system is calculated using a single Slater determinant constructed using single par-

ticle orbitals combined in anti-symmetric approached. The many electron Hartree

Fock wave function is defined as:

ψHF (r1, r2, r3, . . . , rN) =
1√
N !



ψ1(r1) ψ2(r2) ψ3(r3) . . . ψ1(rN)

ψ2(r1) ψ2(r2) ψ3(r3) . . . ψ2(rN)

...
...

...
...

ψN(r1) ψN(r2) ψN(r3) . . . ψN(rN)


(2.6)

Hence the single-particle Hartree Fock Hamiltonian is

H =
−∆2

2me

+ Vext + VHartree + V HF
X (2.7)

where VHartree is defined is the direct interaction between electrons and VHF
X is the

Hartree-Fock exact exchange that only acts on electrons of the same spin. A hybrid-

functional DFT calculation mixes a fraction of exact Hartree-Fock exchange with a

LDA or GGA functional. This allows the Kohn-Sham Hamiltonian to be re-written

as

H =
−∆2

2me

+ Vext + VHartree + VXC + α(V HF
X + V DFT

X ) (2.8)
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The HSE hybrid functional we use in this study mixes screened Hartree Fock ex-

change with a GGA exchange-correlation functional implemented by Perdew-Burke

and Ernzerhof (PBE). The exchange interaction in the HSE functional is separated

into short-range (SR) and long-rang (LR) interaction components using an error func-

tion

1

r
=
erfc(ωr)

r
+
erfc(ωr)

r
(2.9)

where ω is the range-separation. In the default HSE calculation, HSE06, the PBE

exchange correlation approximation is mixed with screened Hartree-Fock exchange

in a 3 to 1 ratio for the SR interactions. The long-range exchange and correlation

interactions are described by the PBE functional. Hence the exchange correlation

Hamiltonian for the HSE06 function can be defined as

HHSE06
XC =

1

4
EHF,SR
X (ω) +

3

4
EPBE,SR
X (ω) + EPBE,LR

X (ω) + EPBE
C (2.10)

where EPBE
C is the correlation energy from the PBE functional. The HSE func-

tional has been shown in calculations of a number of semiconducting systems to reduce

the band-gap error introduced by using local or semi-local approximations of DFT.

The default mixing percentage of exact Hartree-Fock exchange (25%) is suitable

for most semiconducting materials in their bulk structure. However for wide-band-

gap materials and for low dimensional structures the amount of exact exchange has to

be tuned to match the fundamental bandgap of the material. In this work we perform

ab-initio calculations of materials starting with a PBE functional and compare our

results to corrections made using a hybrid HSE functional.
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2.2 Density Functional Perturbation Theory

Density functional theory calculations can also be applied to calculate the first-order

response of a material. In this study density functional perturbation (DFPT) was

used to calculate the phonon spectra and vibrational properties of bulk and thin

film structures of layered materials. Here we summarize some of the underlying

approximations made in DFPT calculations, more detail reviews and discussion of the

formalism and approach can be found in Ref. [56,57]. The underlying approximation

to calculate vibrational properties of materials using DFT is the Born-Oppenheimer

approximation. In the Born-Oppenheimer approximation the ionic and electronic

degrees of freedom of the system are decoupled, since it it assumed the electrons

respond instantaneously to changes in the ionic positions. Hence, in equilibrium the

forces acting on the ions can be obtained from the energy calculated with DFT.

FI = −δE(RI)

δRI

= 0 (2.11)

where RI is the position of the Ith ion and FI is the force acting on the ion. In the

harmonic approximation, the second-order derivative of the ground state energy with

respect to the atomic positions is used to define the dynamical matrix and calculate

the vibrational frequencies of a material.

det

∣∣∣∣ 1√
MIMJ

δ2E(Rj)

δRIδRJ

− ω2

∣∣∣∣ = 0 (2.12)

In DFPT second order perturbation of the DFT total energy, δ2E is obtained by ex-

panding the total energy with respect to changes in the electron wave functions. Using

the Hellman-Feynman theorem [56], δ2E and the force acting on ion I in equilibrium
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is defined as:

FI = −δE(RI)

δRI

(2.13)

where ψ is the ground-state wave function. The Hamiltonian Hele depends on the

ionic positions RI through the electron-ion interaction which couples the electronic

degrees of freedom with the lattice through changes in the electron charge density,

n(r). Hence, calculation of the second derivative of the total energy with respect to the

ionic positions requires the ground-state charge density, n(r) and its linear response

to distortion of the ionic positions, δn(r)
δRJ

. Using the DFPT formalism the charge

density response to perturbations can be obtained for each phonon wave vector, q

independently. Hence, a DFPT calculation for any phonon wave vector q provides

the phonon eigen-energies at that point in the Brillouin zone.

17



Chapter 3

Electronic and Thermoelectric

Properties of Few-Layer Transition

Metal Dichalcogenides

3.1 Introduction

Semiconducting, transition-metal dichalcogenides (TMDCs) exhibit promising elec-

tronic [37, 58–61], opto-electronic [62] and spintronic [63] properties. Single mono-

layers (three atomic layers) can be either exfoliated or grown with chemically stable

surfaces. The electronic, optical, and spin properties of monolayers are qualitatively

different from those of the bulk. The band gap changes from indirect to direct, and

the valence band edges at the K and K ′ points become spin polarized. [62,63] These

materials are discussed in a number of recent reviews. [20, 21,64–66]

Experimental studies conducted on a different set of two-dimensional materials,

namely Bi2Te3 and Bi2Se3, demonstrated an improvement in their thermoelectric

performance as their thickness was reduced. [67, 68] A large increase in ZT has been
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theoretically predicted for monolayer Bi2Te3 compared to that of the bulk. [45,69,70]

This enhancement in ZT results from the unique, step-function shape of the density

of modes at the valence band edge of a single quintuple layer. [45, 70] The shape

of the density of modes increases the power factor, and the increase in the power

factor increases ZT. For Bi2Te3, the large enhancement in the power factor and in ZT

only occurs for a monolayer. For bilayer and trilayer Bi2Te3, the step-like shape of

the density of modes disappears, and the calculated values of ZT are either slightly

higher [71] or slightly lower [45] than that of the bulk.

Prior experimental and theoretical investigations of the thermoelectric perfor-

mance of transition metal dichalcogenides have focused on either bulk or monolayer

materials. [62, 72–77]. There has not been a study of the effect of film thickness on

the power factor and ZT in the transition metal dichalcogenides. It is not known

whether the power factor and ZT are maximum at monolayer thickness or at some

other thickness.

This work theoretically investigates the electronic properties and the thermoelec-

tric performance of bulk and one to four monolayers of 4 different TMDC materi-

als: MoS2, MoSe2, WS2, and WSe2. The goal is to understand how their electronic

and thermoelectric properties vary with thickness. Similar to monolayer Bi2Te3, the

increase in ZT for the ultrathin films results from an enhanced degeneracy or near-

degeneracy of the band edges. In the TMDCs, at few layer thicknesses, different

valleys become nearly degenerate with energy differences of less than kBT at room

temperature. Because of weak interlayer coupling at certain valleys, additional bands

from additional layers lie within kBT of the bandedges for few layer thicknesses. The

increased degeneracy results in a sharper turn on of the the density of modes near

the band edges. In all cases, the thickness with the sharpest increase in the density

of modes has the largest value for ZT. For the semiconducting TMDCs considered
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here, that optimum thickness is not, in general, a single monolayer.

3.2 Theoretical Methods

Ab-initio calculations of the bulk and few-layer structures (one to four layers) are

carried out using density functional theory (DFT) with a projector augmented wave

method [78] and the Perdew-Burke-Ernzerhof (PBE) type generalized gradient ap-

proximation [79,80] as implemented in the Vienna ab-initio simulation package (VASP).

[81, 82] The vdW interactions in MoSe2 and MoS2 are accounted for using a semi-

empirical correction to the Kohn-Sham energies when optimizing the bulk structures

(optimization of WS2 and WSe2 structures are done at the PBE level since the semi-

empirical parameters for tungsten are currently not described by the dispersion po-

tential). [83] The Monkhorst-Pack scheme is used for the integration of the Brillouin

zone with a k-mesh of 12 x 12 x 6 for the bulk structures and 12 x 12 x 1 for the

thin-films. The energy cutoff of the plane wave basis is 300 eV. All of the the elec-

tronic bandstructure calculations include spin-orbit coupling. Calculations are also

performed without spin-orbit coupling and the results are compared.

To verify the results of the PBE calculations, the electronic structure of 1L, 2L, 3L

and 4L MoS2 are calculated using the much more computationally expensive hybrid

Heyd-Scuseria-Ernzerhof (HSE) functional. [84] The HSE calculations incorporate

25% short-range Hartree-Fock exchange. The screening parameter µ is set to 0.4

Å−1.

The thermoelectric parameters are calculated from a Landauer formalism using

the ab-initio derived density of modes. [45, 70, 76] In the linear response regime, the

electronic conductivity (σ), the electronic thermal conductivity (κe), and the Seebeck
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coefficient (S) are expressed as [85,86]

σ = (2q2/h)I0 (Ω−1m−1), (3.1)

κe = (2Tk2B/h)(I2 − I21/I0) (Wm−1K−1), (3.2)

S = −(kB/q)
I1
I0

(V/K), (3.3)

with

Ij =
1

L

∫ ∞
−∞

(
E − EF
kBT

)j
T̄ (E)

(
−∂f0
∂E

)
dE (3.4)

where L is the device length, q is the magnitude of the electron charge, h is Planck’s

constant, and kB is Boltzmann’s constant. The transmission function is

T̄ (E) = T (E)M(E) (3.5)

where M(E) as the density of modes (DOM). In the diffusive limit,

T (E) = λ(E)/L, (3.6)

and λ(E) is the electron mean free path. When phonon scattering is dominant, the

mean free path can be written as a constant, λ(E) = λ0. As discussed in Ref. [87],

the transport distribution, Ξ(E), arising from the Boltzmann transport equation is

related to the above quantities by Ξ(E) = 2
h
T (E)M(E).

The density of modes M(E) can be defined as [45,85]

M(E) =

(
L⊥
2π

)d−1 ∫
BZ

∑
k⊥

Θ(E − ε(k⊥))dkd−1⊥ (3.7)

where d is the dimensionality of the system, L⊥ are the dimensions of the structure
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perpendicular to the direction of transport (L2
⊥ = W x t for d = 3, L⊥ = W for d

= 2; W = width of the structure, t = film thickness), Θ is the unit step function,

and k⊥ refers to the k states in the first Brillouin zone perpendicular to the transport

direction. Using Eq. (5.7), M(E) of any material in any dimension can be numerically

evaluated from a given electronic band structure by counting the bands that cross the

energy of interest. The density of modes calculations are performed by integrating

over the first Brillouin zone using a converged k point grid (51 x 51 x 10 k points for

the bulk structures and 51 x 51 x 1 for the thin films).

We account for carrier scattering within each structure by fitting our calculated

bulk electrical conductivity with bulk experimental data. An electron mean free path

of λ0 = 14 nm gives the best agreement with experimental data on the Seebeck

response of bulk MoS2 as a function of the electrical conductivity. [88, 89] The bulk

p-type electrical conductivity of MoS2 at room temperature was reported to be 5.1

Ω−1cm−1 with a Seebeck coefficient of ∼450 µVK−1 at a carrier concentration of 1016

cm−3. [89] Using λ0 = 14nm we obtain an electrical conductivity of 4.97 Ω−1cm−1 with

a Seebeck coefficient of ∼398 µVK−1 at the same carrier concentration. This value of

the mean free path is also consistent with a theoretically derived energy independent

acoustic phonon-limited mean free path (λ0 = 14 nm) for electrons in monolayer

MoS2, [90] and was successfully used to simulate and compare to experimental results

of the transfer characteristics of single layer MoS2 field effect transistor. [58] As an

initial approximation of carrier scattering we use the same λ0 value to model the

thermoelectric properties of all the TMDC materials investigated in this study.

For the in-plane lattice thermal conductivity, a κl value of 19.5 Wm−1K−1 ob-

tained from a molecular dynamics simulation on monolayer MoS2 is used. [91] Prior

experimental [92] and theoretical [76] studies of the lattice thermal conductivity in

the TMDC materials have demonstrated that κL does not vary significantly for the
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different TMDC compounds studied here. With the above quantities in hand, the

power factor, S2σ, and the thermoelectric figure of merit ZT = S2σT/(κl + κe) are

determined.

3.3 Results

All of the thermoelectric parameters are derived from the calculated electronic band-

structures. Therefore, we begin this section with a discussion of the calculated band-

structures. The bandstructure calculations produce considerably more information

than is required for calculating the thermoelectric parameters. To preserve that infor-

mation and contribute towards a database of material parameters, extracted proper-

ties such as effective masses and energy gaps at high symmetry points are tabulated.

Figure 3.1 shows the ab-initio band structure of one-layer (1L) through four-layer

(4L) and bulk WS2.

The large valence band splitting at the K-point and the direct-indirect gap tran-

sition as the film thickness increases above 1L are features that occur in the other

TMDC materials included as part of this study. The last panel in Fig. 3.1 illustrates

the effect of decreasing layer thickness on the bandgap for all of the materials studied.

The optimized lattice parameters of the bulk TMDC compounds are listed in Table

3.1.

The results in Table 3.1 and Figure 3.1 are consistent with prior experimental char-

acterization [3–5] and theoretical calculations of the bulk [93,94] and thin film [95,96]

crystal structures and electronic band structures. The results of these electronic
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Figure 3.1: Ab-initio calculated band structures of WS2: 1L, 2L, 3L, 4L and bulk. The
bottom right panel illustrates the variation of the band gap of the TMDC materials
as a function of the number of layers.

a0(Å) c0(Å) z aexpt0 (Å) cexpt0 (Å) zexpt Eg(eV) Eexpt
g (eV)

MoS2 3.179 12.729 0.627 3.160 12.290 0.629 1.060 1.29

MoSe2 3.309 13.323 0.624 3.289 12.927 0.621 0.959 1.09

WS2 3.183 13.131 0.630 3.150 12.320 0.622 1.283 1.35

WSe2 3.319 13.729 0.627 3.282 12.960 0.621 1.188 1.20

Table 3.1: Calculated properties of bulk TMDC materials: lattice constant a0, c-axis
lattice constant c0, z-parameter z, and bandgap Eg(eV). Experimental values [3–5]
have been included for comparison.
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Structure Point MoS2 MoSe2 WS2 WSe2 MoS2 MoSe2 WS2 WSe2

Hole Effective Mass (m0) Electron Effective Mass (m0)

1L Kl 0.543 0.578 0.339 0.341 0.506 0.502 0.349 0.345

Kt 0.546 0.588 0.339 0.348 0.504 0.503 0.347 0.345

2L Γ 1.039 1.430 1.239 1.322 - - - -

Kl 0.548 0.595 0.345 0.349 0.521 0.539 0.359 0.411

Kt 0.546 0.596 0.346 0.348 0.510 0.539 0.359 0.412

3L Γ 1.239 1.432 1.246 1.382 - - - -

Kt 0.549 0.602 0.366 0.368 0.559 0.544 0.376 0.434

Kt 0.548 0.604 0.366 0.368 0.559 0.544 0.377 0.434

4L Γ 1.239 1.433 1.351 1.432 - - - -

Kl 0.548 0.604 0.366 0.367 0.554 0.542 0.376 0.435

Kt 0.546 0.604 0.366 0.368 0.559 0.549 0.377 0.434

Bulk Γ 0.838 0.973 0.832 0.997 - - - -

Σl - - - - 0.590 0.521 0.569 0.489

Σt - - - - 0.845 0.776 0.665 0.643

Table 3.2: Ab-initio calculations of the hole and electron effective masses at the
valence band maxima and conduction band minima respectively for each structure
in units of the free electron mass (m0). The subscripts l and t refer to the masses
calculated at the symmetry point along the longitudinal and the transverse directions.

structure calculations at the high symmetry points are summarized in Tables 3.2 and

Table 3.3. Table 3.2 gives the relative effective masses, and Table 3.3 gives the

energy gaps.

A number of prior theoretical studies of the electronic structure of monolayer and

few-layer TMDCs did not include spin-orbit interaction. [95–97] As a result, the band

bandgaps reported in those studies are slightly larger. For example the bandgaps

reported in a prior PBE level calculation [95] are greater by 70 meV, 260 meV and

and 284 meV for MoS2 and MoSe2, WS2 and WSe2 respectively when compared to

our calculation results. Without the inclusion of spin-orbit interaction, our values

for the bandgap of the monolayer TMDCs are consistent with the bandgaps reported
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Structure Transition MoS2 MoSe2 WS2 WSe2 MoS2 MoSe2 WS2 WSe2

Calculated (eV) Experimental (eV)

1L Γv to Kc 1.705 1.768 1.849 1.776 - - - -

Γv to Σc 1.922 1.862 1.929 1.806 - - - -

Kv1 to Kc 1.600 1.375 1.573 1.254 1.900 1.660 1.950 1.640

Kv2 to Kc 1.750 1.556 1.973 1.715 2.050 1.850 2.360 2.040

2L Γv to Kc 1.564 1.368 1.507 1.586 1.600 - 1.730 -

Γv to Σc 1.775 1.373 1.542 1.562 - - - -

Kv1 to Kc 1.600 1.373 1.549 1.269 1.880 - 1.910 1.590

Kv2 to Kc 1.760 1.556 1.977 1.788 2.050 - 2.340 2.000

3L Γv to Kc 1.150 1.334 1.458 1.586 - - - -

Γv to Σc 1.171 1.372 1.482 1.508 - - - -

Kv1 to Kc 1.620 1.376 1.485 1.265 - - - -

Kv2 to Kc 1.780 1.564 1.873 1.783 - - - -

4L Γv to Kc 1.120 1.351 1.438 1.546 - - - -

Γv to Σc 1.139 1.374 1.439 1.434 - - - -

Kv1 to Kc 1.630 1.356 1.459 1.259 - - - -

Kv2 to Kc 1.780 1.574 1.877 1.753 - - - -

Bulk Γv to Σc 1.060 0.959 1.283 1.188 1.290 1.090 1.350 1.200

Kv1 to Kc 1.590 1.349 1.453 1.258 1.880 1.350 1.880 1.580

Kv2 to Kc 1.780 1.588 1.889 1.737 2.060 1.380 2.320 1.950

Table 3.3: Ab-initio calculations of the bandgap energies and energy transitions be-
tween the valence (v) and conduction (c) band valleys for each structure and material.
The splitting of the valence band at the K-point due to spin-orbit coupling and the
inter-layer interactions are denoted as Kv1 and Kv2. Σ is the mid-point between Γ
and K. The bandgap at each dimension is highlighted in bold text. Experimental
values when available [3–6] have been included for comparison.
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in these studies. Including spin-orbit coupling results in a splitting of the valence

bands, ∆SO, at K. The spin orbit interaction shifts up one of the degenerate valence

bands, and this reduces the bandgap. The degree of the energy shift ranges from

39.6 meV for MoS2 to 210.9 meV for WS2. The second degenerate valence band is

shifted down by an energy that is also unique to each TMDC material; this ranges

from 110.4 meV for MoS2 to 316.2 meV for WSe2. For example the calculated ∆SO

energies of the monolayer TMDCs are 150 meV, 181 meV, 425 meV and 461 meV for

MoS2, MoSe2, WS2 and WSe2, respectively. This is in good agreement with a prior

PBE level calculation [98] that accounted for spin-orbit interaction which obtained

∆SO values of 146 meV, 183 meV, 425 meV and 461 meV for MoS2, MoSe2, WS2 and

WSe2, respectively, and a ∆SO energy of 188 meV obtained for monolayer MoS2 with

the use of optical absorption experiments. [39]

More sophisticated many-body ab-initio calculations which include HSE or GW

calculations have been reported in prior studies of the band structure of monolayer

[98–101] and bilayer [99, 101] structures of the molybdenum and tungsten dichalco-

genides. The values for ∆SO resulting from these theories are only slightly changed

from those of the PBE model. The ∆SO values reported for monolayer MoS2, MoSe2,

WS2 and WSe2 with a GW (HSE) calculation are 164 (193) meV, 212 (261) meV, 456

(521) meV and 501 (586) meV. [98] The primary difference between the PBE and the

HSE and GW calculations is an increase in the bandgap. However, the PBE bandgap

is large enough compared to the temperatures considered that the exact magnitude

of the bandgap has no effect on the thermoelectric parameters. An explicit compari-

son of the electronic structure and the thermoelectric parameters calculated from the

PBE and the HSE functionals for 1L - 4L MoS2 is given below.

Calculation of the thermoelectric parameters requires the density of modes ex-

tracted from the electronic bandstructure using Eq. (5.7). Figure 3.2 shows the
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Figure 3.2: (Color online) Distribution of modes per unit area versus energy for (a)
MoS2, (b) MoSe2, (c) WS2 and (d) WSe2 for bulk (black), 1L (blue), 2L (red), 3L
(green) and 4L (purple) structures. The midgap energy is set to E=0.

density of modes versus energy for bulk, 1L, 2L, 3L, and 4L MoS2, MoSe2, WS2,

and WSe2. To compare the density of modes of the bulk structure with the thin-

film structures, we divide the density of modes of the thin-film structures by their

respective thickness, t. As will be shown, for these TMDCs, small variations in the

shape of the density of modes near the band edges can enhance the power factor and

subsequently ZT. The thermoelectric properties of the bulk and thin-film structures

are calculated from Eqs. (5.1) - (3.6) using the density of modes shown in Fig. 3.2.

The Seebeck coefficient, electrical conductivity, power-factor (PF), and the ther-

moelectric figure-of-merit (ZT) as a function of the reduced Fermi level, ηF are shown

in Figures 3.3, 3.4, 3.5, and 3.6, respectively.

The reduced Fermi-level is ηF = EF−EC1

kT
for electrons in the conduction band,
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Figure 3.3: (Color online) Seebeck coefficient at 300K for (a) MoS2, (b) MoSe2, (c)
WS2 and (d) WSe2 for bulk (black), 1L (blue), 2L (red), 3L (green) and 4L (purple)
structures. The n-type Seebeck coefficients are plotted with a solid line and p-type
coefficients with a broken line as a function of the reduced Fermi energy, ηF .

Figure 3.4: (Color online) Electrical conductivity, σ, at 300K for (a) MoS2, (b) MoSe2,
(c) WS2 and (d) WSe2 for 1L (blue), 2L (red), 3L (green) and 4L (purple) and bulk
(black) structures. The n-type electrical conductivity is plotted with a solid line and
p-type conductivity with a broken line as a function of the reduced Fermi energy, ηF .
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Figure 3.5: (Color online) Power factor (PF) at 300K for (a) MoS2, (b) MoSe2, (c)
WS2 and (d) WSe2 for bulk (black), 1L (blue), 2L (red), 3L (green) and 4L (purple)
structures. The n-type power factors are plotted with a solid line and p-type PFs
with a broken line as a function of the reduced Fermi energy, ηF .

Figure 3.6: (Color online) ZT at 300K for (a) MoS2, (b) MoSe2, (c) WS2 and (d)
WSe2 for bulk (black), 1L (blue), 2L (red), 3L (green) and 4L (purple) structures.
The n-type ZT is plotted with a solid line and p-type ZT with a broken line as a
function of the reduced Fermi energy, ηF .
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Temperature 1L 2L 3L 4L Bulk

Maximum n-type (p-type) Power Factor (WK−2m−2)

MoS2 300K .130 (.150) .140 (.110) .280 (.041) .220 (.031) .0320 (.010)

150K .093 (.072) .093 (.071) .190 (.032) .120 (.024) .012 (.0042)

77K .072 (.043) .072 (.053) .13 (.021) .063 (.022) .012 (.0031)

MoSe2 300K .340 (.071) .330 (.094) .230 (.082) .230 (.071) .022 (.0061)

150K .151 (.050) .200 (.051) .100 (.051) .100 (.052) .013 (.004)

77K .062 (.031) .120 (.032) .062 (.031) .052 (.032) .013 (.0032)

WS2 300K .240 (.062) .280 (.061) .270 (.071) .240 (.092) .022 (.0052)

150K .110 (.042) .160 (.042) .150 (.041) .130 (.051) .010 (.0043)

77K .051 (.031) .081 (.032) .070 (.032) .081 (.031) .010 (.0022)

WSe2 300K .260 (.054) .240 (.052) .190 (.053) .160 (.053) .022 (.014)

150K .141 (.030) .140 (.031) .081 (.031) .070 (.031) .010 (.004)

77K .071 (.031) .082 (.031) .050 (.031) .043 (.022) .011 (0.0021)

Table 3.4: Peak n-type (p-type) power factor of 1L, 2L, 3L, 4L and bulk MoS2, MoSe2,
WS2 and WSe2 at 300K, 150K and 77K. The maximum power factor for each material
at a given temperature is in bold.

and ηF = EF−EV 1

kT
for holes in the valence band. EC1 and EV 1 are the energies of

the conduction and valence band edges, respectively. For each material and each

thickness the maximum power factor and ZT occurs for the conduction band states.

The peak conduction band and valence band power factor and ZT for each structure

and material at 77K, 150K and 300K are summarized in Table 3.4 and Table 3.5,

respectively.

For all materials, the few layer structures show a large increase in the values of

their power factor and ZT compared to those of the bulk.

The peak n-type ZT values (and corresponding layer thicknesses) for MoS2, MoSe2,

WS2 and WSe2 are 2.23 (t=3L), 2.39 (t=2L), 2.03 (t=3L) and 1.91 (t=2L) which is

an improvement by a factor of 6.4, 8.2, 7.2 and 7.5 over the respective bulk values.

These peak ZT values occur when the Fermi level is moved by 1.39kT, 1.55kT, 1.08kT
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Temperature 1L 2L 3L 4L Bulk

Maximum n-type (p-type) ZT

MoS2 300K 1.35 (.970) 1.35 (1.15) 2.23 (.510) 1.78 (.390) .350 (.081)

150K .590 (.350) .590 (.450) 1.03 (.220) .660 (.160) .110 (.034)

77K .240 (.140) .240 (.190) .420 (.093) .210 (.062) .031 (.012)

MoSe2 300K 1.39 (.800) 2.39 (.810) 1.66 (.810) 1.65 (.810) .290 (.081)

150K .450 (.310) 1.06 (.320) .610 (.320) .570 (.320) .100 (.033)

77K .130 (.120) .410 (.120) .220 (.120) .170 (.120) .030 (.014)

WS2 300K 1.52 (.70) 1.98 (.720) 2.03 (.760) 1.85 (.760) .280 (.082)

150K .411 (.280) .613 (.280) .770 (.280) .721 (.350) .104 (.030)

77K .120 (.110) .181 (.113) .211 (.113) .271 (.113) .034 (.012)

WSe2 300K 1.88 (.620) 1.92 (.620) 1.44 (.620) 1.13 (.620) .260 (.120)

150K .590 (.220) .750 (.220) .490 (.220) .380 (.220) .091 (.032)

77K .180 (.100) .270 (.100) .170 (.100) .130 (.100) .031 (.014)

Table 3.5: Peak n-type (p-type) thermoelectric figure of merit, ZT, of 1L, 2L, 3L, 4L
and bulk MoS2, MoSe2,WS2 and WSe2 at 300K, 150K and 77K. The maximum ZT
for each material at a given temperature is in bold.

and 1.39kT, respectively, below the conduction band at T=300K. This corresponds

to electron carrier densities of 6.26 × 1019 cm−3, 5.74 × 1019 cm−3, 5.34 × 1019 cm−3

and 4.72 × 1019 cm−3 for MoS2, MoSe2, WS2 and WSe2 respectively. The peak p-type

ZT values (and corresponding layer thicknesses) for MoS2, MoSe2, WS2 and WSe2

are 1.15 (t=2L), 0.81 (t=2L-4L), 0.76 (t=2L-3L) and 0.62 (t=1L-4L) which is an

improvement by a factor of 14.4, 10.1, 9.5 and 5.2 over the respective bulk values.

These peak ZT values occur when the Fermi level is moved by 1.16kT, 1.01kT, 0.93kT

and 0.85kT, respectively, above the valence band at T=300K. This corresponds to

hole carrier densities of 7.12 × 1019 cm−3, 5.84 × 1019 cm−3, 4.02 × 1019 cm−3 and

3.91 × 1019 cm−3 for MoS2, MoSe2, WS2 and WSe2 respectively. Of the four TMDC

materials studied, MoS2 is the only material to exhibit a p-type and n-type ZT > 1.

In contrast to Bi2Te3, the peak value of ZT does not occur in any of the materials at
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a monolayer thickness.

The Seebeck coefficients at the maximum n-type (p-type) ZT for each material are

275 (245.6) µVK−1, 287 (230.7) µVK−1, 279 (230.1) µVK−1 and 276 (216.7) µVK−1

for MoS2, MoSe2, WS2 and WSe2 respectively. However, the Seebeck coefficients at

the maximum n-type (p-type) power factor for each material are 167 (90.4) µVK−1,

100 (185.8) µVK−1, 165 (177.1) µVK−1 and 171 (172.1) µVK−1 for MoS2, MoSe2,

WS2 and WSe2, respectively. This is generally consistent with the conclusion of a

report on engineering the Seebeck coefficient to obtain the maximum thermoelectric

power factor. [102]

Without the inclusion of spin-orbit interaction our values of the ballistic ZT for

the monolayer TMDC materials are consistent with a prior report on the monolayer

thermoelectric properties of these TMDC materials. [76] Our calculations show that

without the inclusion of spin-orbit interaction the peak n-type ZT values for all mate-

rials continue to occur at thicknesses above a single monolayer. The peak n-type ZT

values (and corresponding layer thicknesses) without spin-orbit interaction for MoS2,

MoSe2, WS2 and WSe2 are 1.38 (t=3L), 1.52 (t=2L), 1.13 (t=4L) and 1.28 (t=2L).

However, the peak p-type ZT values without spin-orbit interaction occurs for a sin-

gle monolayer for each TMDC material. The p-type ZT values without spin-orbit

interaction for MoS2, MoSe2, WS2 and WSe2 are 1.42, 0.84, 0.90 and 0.69.

Recent electronic structure calculations using the Heyd-Scuseria-Ernzerhof (HSE)

hybrid functional [101] give a bandgap that more accurately matches known exper-

imental values. [101] To assess whether the trends in the thermoelectric parameters

predicted with the PBE functional are the same as those resulting from the HSE

functional, we calculate the electronic band structure of 1L, 2L, 3L and 4L MoS2

with both the PBE and the HSE functional and plot the results in Fig. 3.7. Near the

band edges, the HSE energies appear to be shifted with respect to the PBE energies.
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Figure 3.7: Ab-initio calculated electronic structure of MoS2: 1L, 2L, 3L and 4L
structures using a PBE (blue) and hybrid HSE (red) functional. The HSE functional
provides a correction to the underestimated PBE bandgap while the salient features
of the electronic structure that would affect the density-of-modes calculation remain
the same.

The effective masses for the HSE band structures are lower by up to 17% for the

conduction band valleys at K and Σ and are lower by up to 11% for the valence band

valleys at K and Γ.

To verify that the HSE functional leaves the thermoelectric trends predicted from

the PBE functional unchanged, we compute the density-of-modes and thermoelectric

performance of 1L, 2L and 3L MoS2 using the HSE functional with the inclusion of

spin orbit coupling. Figure 3.8 illustrates the DOM, Seebeck coefficient, power factor

and ZT for the 1L, 2L and 3L structures of MoS2 computed with the HSE functional.

The quantitative values do differ. For the MoS2 trilayer structure, the HSE (PBE)

functionals give a peak n-type power factor of 0.41 (0.28) WK−2m−2 and a peak n-type

ZT of 2.4 (2.2). However, the HSE results for few-layer MoS2 structures demonstrate

the same trends in the shape of the density of modes and the same trends in the
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Figure 3.8: (Color online) HSE calculation of the (a) density-of-modes, (b) Seebeck
coefficient, (c) Power factor and (d) ZT 1L (blue), 2L (red), 3L (green) MoS2. The n-
type thermoelectric parameters are plotted with a solid line and the p-type parameters
are plotted with a broken line as a function of the reduced Fermi energy, ηF .
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Figure 3.9: (Color online) Maximum thermoelectric performance for 1L (blue), 2L
(red), 3L (green), 4L (purple) and bulk (black) MoS2, MoSe2, WS2, WSe2 at 300K: (a)
Maximum p-type ZT, (b) Maximum n-type ZT, (c) Maximum p-type power factor,
(d) Maximum n-type power factor.

values for the power factors and ZT. Both the HSE and PBE calculations show that

the turn-on of the density of modes is sharpest for the tri-layer structure resulting in

maximum values for the power factor and ZT. Since the primary effect on the low

energy states of the exact exchange in the HSE functional is to shift the band edges

with respect to those of a PBE calculation, the trends resulting from the shape of the

density of modes should be preserved.

Figure 3.9 summarizes the values from the PBE calculations for the peak n-type

and p-type ZT and power factors for each TMDC material and layer thickness.

In the n-type MoSe2, WS2 and WSe2 structures, the peak power-factor and the

peak ZT do not occur at the same film thickness. For example, in MoSe2, a single

monolayer has the highest power factor, and a bilayer has the highest ZT. This can

be explained by the increase in the electronic thermal conductivity, κe as the Fermi

level is moved into the conduction band.

Figure 3.10 shows the ratio of the total thermal conductivity, κtot, with respect
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Figure 3.10: (Color online) Ratio of total thermal conductivity (κl+κe) over the lattice
thermal conductivity (κl) at 300K for (a) MoS2, (b) MoSe2, (c) WS2, (d) WSe2 for 1L
(blue), 2L (red), 3L (green) and 4L (purple) structures. The n-type ratio is plotted
with a solid line and p-type ratio with a broken line as a function of the reduced Fermi
energy, ηF . The two vertical dashed lines show the reduced Fermi level position at
which the maximum n-type power factor and ZT occur.

to the lattice thermal conductivity, κl, for each TMDC material.

The two guide lines on each figure illustrate the reduced Fermi level position at

which the maximum n-type power factor and ZT occurs. The ratio κtot/κl = 1+κe/κl

is higher at the Fermi level position where the the maximum power factor occurs. This

increase in κe explains why the peak power factor and ZT occur at different Fermi

energies and film thicknesses.

A number of recent studies report on the theoretical [103, 104] and experimen-

tal values [105, 106] of the lattice thermal conductivity on monolayer and few-layer

TMDC materials with values of κl ranging from 19 Wm−1K−1 to 83 Wm−1K−1. Ex-

perimental measurements of the in-plane κl in suspended samples of MoS2 [106] find

a value of 34.5 Wm−1K−1 for 1L MoS2 and 52 Wm−1K−1 for few-layer MoS2. To as-

sess whether the inequivalent κl values for the monolayer and few-layer TMDC films
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Figure 3.11: (Color online) Maximum ZT for (a) p-type and (b) n-type of MoS2,
MoSe2, WS2, WSe2 at 300K for 1L (blue), 2L (red), 3L (green), 4L (purple) structures
accounting for thickness-dependent lattice thermal conductivity. κl =34.5 Wm−1K−1

used for the 1L structures and κl=52 Wm−1K−1 used for the few-layer structures.

leave the predicted thermoelectric trends unchanged, we computed the thermoelectric

parameters using κl=34.5 Wm−1K−1 for the monolayer and κl=52 Wm−1K−1 for the

few-layer TMDC films of each material. The values of ZT differ compared to using

κl=19 Wm−1K−1 for each film thickness. For MoS2, the room temperature n-type

ZT values using the thickness dependent (constant) κl for the 1L, 2L, 3L and 4L

structures are 0.87 (1.35), 0.63 (1.15), 1.11 (2.23), 0.89 (1.78). The maximum n-type

ZT still occurs for the 3L structure and the minimum n-type ZT still occurs for the 1L

structure. The trends for all of the n-type materials are preserved when a thickness

dependent thermal conductivity is used. All of the values are shown in Fig. 3.11(b).

For the n-type materials, changes in the density of modes are the dominant factor

determining the trends. For p-type MoSe2, WS2, WSe2, ZT varies little for different

layer thicknesses when using a constant κl as shown in Fig. 3.9(a). For p-type MoS2,

the difference between the maximum ZT of a bilayer and the second highest value

of a monolayer is small. Therefore, reducing the value of κl for a monolayer from 52

to 35.4 WM−1K−1 is sufficient to cause the peak value of ZT to occur at monolayer

thickness for all 4 p-type materials as shown in Fig. 3.11(a).

In an attempt to study the transition of the thermoelectric performance from few-

layer films to bulk like performance, we calculate the thermoelectric parameters for

an 8L film of WS2. Figure 3.12 illustrates the density of modes and the ZT for bulk,
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Figure 3.12: (Color online) (a) Density of modes and (b) ZT as a function of the
reduced Fermi level for 3L (green), 8L (orange) and bulk (bulk) WS2.

3L and 8L WS2. The n-type 0.974 ZT value of the 8L film is a factor of 1.9 smaller

than that of the 4L film, but it is still a factor of 3.5 larger than that of the bulk.

The p-type 0.163 ZT value of the 8L film is a factor of 4.7 smaller than that of the

4L film, and it is a factor of 2.0 larger that that of the bulk. Even at 8 monolayers,

there is still an enhancement of the ZT value compared to that of the bulk, and the

enhancement is larger in the n-type material.

The thermoelectric performance in the low dimensional structures is enhanced by

the more abrupt step-like shape of the density of modes distribution. [87] It is clear

from Eq. (5.4), that with EF ≤ 0, a step-function density of modes removes all

negative contributions to the integrand of I1 giving a maximum value for I1. The

conduction band DOM distribution for the maximum and minimum ZT structures

for each material are plotted in Figure 3.13.

In all cases, the DOM with the sharper turn-on at the band edge gives rise the

the maximum value for ZT.
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Figure 3.13: (Color online) Conduction band density of modes (DOM) for (a) MoS2,
(b) MoSe2, (c) WS2 and (d) WSe2 at film thicknesses where the maximum and the
minimum ZT occurs with respect to the energy away from the conduction band edge,
EC .
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3.4 Discussion

The enhancement in the thermoelectric performance of few monolayer TMDC ma-

terials is in contrast to the enhanced thermoelectric performance observed for only

a single quintuple (QL) layer of p-type Bi2Te3. Above 1 QL of Bi2Te3, the thermo-

electric figure of merit approaches the bulk ZT. [45, 70]. The enhancement of ZT in

n-type monolayer Bi2Te3 is minimal. This difference in the effect of layer thickness

on ZT in the two different classes of materials can be explained by differences in the

effect of thickness on the band-edge degeneracy and the density of modes. The va-

lence band of monolayer Bi2Te3 is a ring in k-space that covers much of the Brillouin

zone as shown in Fig. 4(d) of Ref. [45]. Thus, the integration over k⊥ in Eq. (5.7)

jumps from zero in the band gap to a finite number at the band edge resulting in

a step-function turn-on of the valence band density of modes as seen in Fig. 3 of

Ref. [70] and Fig. 2 of Ref. [45]. The size of the ring in k-space quickly collapses

for thicknesses above a monolayer, and the large enhancement in ZT dissappears. In

a parabolic band, the band edge is a point in k-space, and, in two-dimensions, the

density of modes turns on smoothly as
√
E. [87] The band edge of n-type monolayer

Bi2Te3 remains parabolic resulting in a smooth turn-on of the density-of-modes and

no significant enhancement of ZT.

The bands of the TMDC materials also remain parabolic at the band edges, how-

ever the conduction bands at the Kc and the Σc valleys become nearly degenerate for

few monolayer thicknesses as shown in Fig. 3.1. Since the Σc valley is 6-fold degen-

erate, and the Kc valley is 3-fold degenerate, this results in a near 9-fold degeneracy

of the conduction band edge. This increases the density of modes in the conduction

band by a factor of 9 from that of a single valley. Furthermore, with increasing film

thickness from 1L to 4L, the splitting of the Σc bands resulting from interlayer cou-
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pling is on the order of kBT . In MoS2, the splitting at ΣC is 0.4 meV for the 2L and 40

meV for the 4L structure. The other materials show similar magnitudes of the energy

splitting as a function of thickness. Therefore, the near-degeneracy of the bands at

Σc increases linearly with the film thickness, so that the number of modes per layer

becomes relatively insensitive to the layer thickness for few monolayer thicknesses.

The interlayer coupling of the out-of-plane dz2 and pz orbitals result in the strongest

interlayer hybridization and energy level splitting. [107] In MoS2 the orbital compo-

sition of the conduction band Σc valley is 36% dz2 , 22% dxy, 23% dx2−y2 , 6% pz, and

5% px and py. The d-orbital composition of the Kc valley is 67% dz2 . With increas-

ing layer number, the Kc valley splitting is larger than kBT so that the number of

modes contributed by the Kc valleys remains 3 independent of layer number. Thus,

when the Σc valley falls within kBT of the Kc valley, its contribution to the density

of modes dominates for few-layer thicknesses. Beyond 4 layers, the total splitting be-

comes larger than 2kBT , and the number of accessible modes at Σc no longer increases

linearly with thickness.

Beyond a monolayer, the valence band shifts to Γv for MoS2, MoSe2 and WS2.

The energy difference between Γv and Kv varies as a function of the film thickness and

material. For MoS2 the energy difference between Γv and Kv increases from 35 meV

for the bilayer to 470 meV and 510 meV for the 3L and 4L structures respectively.

The near degeneracy of the Γv and Kv valleys leads to the largest p-type density of

modes for 2L MoS2. For MoSe2, the Γv and Kv valleys are nearly degenerate above

a single monolayer. In WS2, the energy difference of the Γv and Kv valleys decreases

from 42 meV to 21 meV as the film thickness is increased from a bilayer to four layers.

For WSe2, the valence band maxima continues to reside at Kv beyond a monolayer.

Once the valence band Kv valleys begin to contribute in MoSe2, WS2, and WSe2, the

density of modes per layer becomes relatively independent of layer thickness, since
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there is little splitting of the Kv valleys due to the interlayer coupling. [107] The Kv

valley orbital composition contains no dz2 or pz components. In MoS2, the splitting

varies from 0.2 meV for the 2L structure to 7.6 meV for the 4L structure. The other

materials show similar magnitudes of the energy splitting as a function of thickness.

Thus, at room temperature, the number of contributed modes per layer within kBT

of the Kv valley minimum remains constant for thicknesses in the range of one to four

monolayers.

For the 8 layer WS2 structure, the conduction band Kc and Σc valleys are still

nearly degenerate. The Kc valley lies 21 meV above the Σc valley. However, at both

valleys, the total splitting of the 8 bands contributed from the 8 layers is much greater

than kBT at room temperature. At Σc, only two of the 8 bands are within 26 meV of

the valley minimum. The overall energy splitting of the 8 bands at Σc is 193 meV. In

the valence band, the Kv valley is 22 meV below the Γv valley. However, the 8 bands

from the 8 monolayers are split over a total range of 180 meV, and the second band

is 40 meV below the Kv valley maximum. Thus, as the number of layers increase,

the total energy splitting of the bands contributed from each layer increases, and the

number of modes per layer within kBT of the valley minimums decreases.

As the number of layers becomes macroscopic such that the crystal is periodic in

all three dimensions, the total splitting of the bands evolves into the width of the

dispersive band along kz for the bulk crystal. For bulk WS2, the width of the band

along the vertial kz direction from Σc to R at the top of the Brillouin zone is 208 meV

which is 15 meV larger than the total splitting of the 8 layer stack. Furthermore, in

the bulk, the Kc valley is 126 meV above the Σc minimum, so the Kc contributes no

modes to the density of modes near the conduction band edge. In the valence band,

the Kv valley maximum is 225 meV below the Γv maximum, so that the density of

modes near the valence band edge, is entirely from the Γv valley. The lack of valley
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near-degeneracy and the width of the bulk dispersive bands along kz, result in a

minimum density of modes per layer near the band edges compared to those of few

layer structures. The reduced number of modes per layer within kBT of the band

edges results in reduced per-layer values of the thermoelectric figure of merit.

For both material systems Bi2Te3 and the semiconducting TMDCs, the enhance-

ment of ZT results from the increased degeneracy or near-degeneracy of the band

edges. The origin and nature of the degeneracy is different. In the Bi2Te3, the

valence band edge becomes inverted into a ring as a result of the coupling of the

topological surface states. In the TMDCs at few-layer thicknesses, different valleys

become nearly degenerate. In the conduction band, the Σc valleys become nearly

degenerate with the Kc valleys, and they contribute 6 more modes to the 3 modes

from the Kc valleys. In the valence band, the Kv valleys become nearly degenerate

with the Γv, and they contribute 3 more modes. Furthermore, because of the weak in-

terlayer coupling at Kv and Σc, the additional bands from additional layers lie within

kBT of the band edges for few layers. The increased band-edge degeneracy results in

a sharper turn-on of the density of modes and an increased value of ZT.

3.5 Summary

The electronic structure of one to four monolayers of the semiconducting transition

metal dichalcogenides MoS2, MoSe2, WS2 WSe2 are calculated using DFT with spin-

orbit coupling and the PBE functional. Comparisons are made to results in the

absence of spin-orbit coupling, and the PBE results are compared to HSE calculations

for MoS2. The peak n-type value of ZT increases by a factor of 6 − 8 over the bulk

value for all materials. Among the 4 materials and 4 thicknesses, bilayer MoSe2 gives

the maximum n-type ZT value of 2.4. The peak p-type value of ZT increases by a
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factor of 5− 14 over the bulk value for all materials. The maximum p-type ZT value

of 1.2 occurs for bilayer MoS2. The maximum power factor generally occurs for a

different layer thickness and at a more degenerate Fermi level than the maximum

value of ZT. This difference can be explained by the increased electrical thermal

conductivity at the Fermi level corresponding to the maximum power factor. For

all materials, the maximum value of ZT coincides with the sharpest turn-on of the

density of modes distribution at the band edge. The sharper turn-on is driven by

the near valley degeneracy of the conduction band Kc and Σc valleys and the valence

band Γv and Kv valleys. For few layer structures, the degeneracy is enhanced by the

weak interlayer coupling at the Σc and Kv valleys.
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Chapter 4

Electronic properties of

misoriented transition metal

dichalcogenides

4.1 Introduction

There is rapid progress fabricating electronic and optoelectronic devices with verti-

cally stacked transition metal dichalcogenides (TMDCs). [108–110] The operation of

these devices can rely on the alignment of the individual monolayers so that there is a

preservation of inversion symmetry. [109] The fabrication of such devices often relies

on mechanical stacking or the chemical growth of individual layers or few-layers of

the TMDC materials. Such approaches are known to lead to interfaces that are tur-

bostratically misoriented with respect to each other. [21, 111, 112] This motivates us

to investigate the effect of crystal alignment and proximity on the electronic structure

of perfectly registered and misoriented TMDC bilayers.

Prior experimental and theoretical studies of misorientation in graphene bilay-
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ers demonstrated that a few degrees of misorientation are sufficient to decouple the

low-energy electronic states of the individual layers. [113,114] This is, in general, not

true for TMDC bilayers. Rotated bilayers retain the qualitative electronic character-

istics of a bilayer film rather than that of two independent monolayer films. While

monolayers are direct gap, theoretical calculations showed that the bandgaps of bi-

layer MoS2, MoSe2, WS2, and WSe2 are indirect for all stacking orders. [115] When

monolayers of MoS2 are folded or rotated with respect to each other to form a bi-

layer, the bandgap becomes indirect with a value somewhat larger than that of an

oriented bilayer. [116–119] AA stacked heterolayers of WS2-WSe2 and MoS2-WSe2

in which the chalcogen atoms are vertically aligned remained direct gap, [120] and

heterolayers of MoS2-MoSe2 were shown to have a direct gap transition [107,121] with

the conduction band and valence band edges localized in different layers. Theoretical

calculations demonstrated controlled decoupling of bilayer MoS2 by bending. [122].

Experimentally, electronic decoupling of the TMDC monolayers has been achieved by

inserting hexagonal boron nitride (h-BN) between the monolayers. [123,124]

For bilayers of MoSe2, WS2 and WSe2, the effect of rotation angle on the interlayer

interaction has not yet been investigated. This work studies and compares the effect

of misorientation on the electronic structure of bilayers of MoS2, MoSe2, WS2 and

WSe2. Figure 4.1 shows a twisted MoS2 bilayer, which is one of the structures studied

in this work.

4.2 Methodology

Ab initio calculations of the bilayer and misoriented structures are carried out using

density functional theory (DFT) with a projector augmented wave method [78] and

the Perdew-Burke-Ernzerhof (PBE) type generalized gradient approximation [79,80]
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Figure 4.1: (Color online) (a) Atomic structure of rotated bilayer MoS2.

as implemented in the Vienna ab-initio simulation package (VASP). [81,82]

The lattice constants for the bilayer structure of each material are obtained from

our prior calculations on the bulk structures of each material [1]. The registered

bilayer structures rotated by 0o correspond to the 2H stacking order and the 60o

structure corresponds 3R stacking order. The primitive unit cells of the misoriented

structures rotated by 13.17◦, 21.78◦ and 27.79◦ are defined using an approach outlined

in previous studies of misoriented bilayers of graphene. [125, 126] For the registered

and rotated bilayer structures, 15Å of vacuum spacing was added in the perpendicular

direction. Each rotated bilayer structure is optimized using the Grimme-D2 [83] and

Tkatchenko-Scheffler [127] methods and the effect of each approach on the optimized

geometry is compared. The atomic coordinates for all of the rotated bilayer structures

were optimized in all directions until the interatomic forces are below 0.002 eV/Å.

The Monkhorst-Pack scheme is used for the integration of the Brillouin zone with a

k-mesh of 6 x 6 x 1 (12 x 12 x 1) for the rotated bilayer (registered bilayer) structures.

The energy cutoff of the plane wave basis for the TMD structures is 400 eV. Spin orbit

coupling is included self consistently in our calculations and the results are compared

to calculations with no spin orbit interaction.
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Figure 4.2: (Color online) (a) Electronic structure of (b) AA’ stacked bilayer MoS2

and (b) bilayer MoS2 rotated at 21.78o. Band structures are calculated with spin-orbit
coupling (red - broken line) and without spin orbit coupling (blue - solid line).

4.3 Results

Figure 4.2 illustrates the atomic structure and the electronic structure of 2H bilayer

MoS2 and the bilayer MoS2 supercell rotated at 21.78o with and without SOC. The

effect of SOC is most prominent in the splitting of the valence band at Kv for each

unrotated and rotated bilayer structure. For MoS2, the splitting, ∆SO for θ=0◦,

21.78◦, 27.79◦ and 13.17◦ is 160 meV, 143 meV, 191.5 meV and 195 meV respectively.

With and without SOC included in each calculation the valence band is Γv and the

conduction band at Kc for the unrotated bilayer TMDCs. The trends resulting from

misorientation angle predicted with or without the inclusion of SOC remain the same.

Hence, unless otherwise noted, the reported results will be from the PBE functional

without SOC.

The values of the energy transitions as a function of rotation angle for all four

TMDCs are listed in Table 4.1, and the bandgap of each material as a function of
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θ dvdW Γv to Kc Kv to Kc

(Å) (eV) (eV)

MoS2

0 (2H) 3.11 1.259 1.659

13.17 3.42 1.481 1.674

21.78 3.38 1.455 1.667

27.79 3.40 1.459 1.674

60 (3R) 3.12 1.199 1.641

MoSe2

0 (2H) 3.20 1.309 1.439

13.17 3.49 1.361 1.458

21.78 3.45 1.331 1.470

27.79 3.47 1.351 1.468

60 (3R) 3.19 1.261 1.421

WS2

0 (2H) 3.14 1.489 1.799

13.17 3.39 1.556 1.819

21.78 3.36 1.518 1.822

27.79 3.37 1.522 1.819

60 (3R) 3.14 1.454 1.786

WSe2

0 (2H) 3.19 1.431 1.504

13.17 3.46 1.518 1.534

21.78 3.41 1.469 1.530

27.79 3.43 1.491 1.533

60 (3R) 3.20 1.396 1.495

Table 4.1: Ab-initio calculations of the energy transitions (non-SOC) for MoS2,
MoSe2, WS2 and WSe2 for the AA’ bilayer structure and structures rotated at angles
21o, 27o, 13o, 33o, 38o and 60o (AA). dvdW is the van-der-Waals gap distance be-
tween adjacent monolayers. Angles are in degrees. NOTE: The bandgap of the WSe2
structures occurs between Kv and Σc. The bandgaps for the θ=0o, 13o, 21o, 27o, 60o

structures are 1.409 eV, 1.430 eV, 1.433 eV and 1.434 eV and 1.410 eV respectively.
Σ is the mid-point between Γ and K.
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rotation angle is plotted in Fig. 4.3. For all of the commensurate rotation angles

considered, the K high symmetry points in the rotated Brillouin zone map on to the

same high symmetry points of the unrotated Brillouin zone. [125] For all 4 TMDCs,

misorientation increases the bandgap with respect to that of the unrotated bilayer.

This trend qualitatively agrees with the experimental data for MoS2 that is also

shown in Fig. 4.3. The twist angles for the experimental measurements for twisted

bilayer MoS2 from Ref. [117] range from 3◦ to 57◦. All of the theoretically calculated

values are well-aligned with the experimental ones, and they show the same trends.

Extremely large supercells are required to model twist angles 0◦ < θ < 13◦ and

50◦ < θ < 60◦, so that in those ranges of angles, there are no theoretical values

for comparison. For the range of angles 10◦ ≤ θ ≤ 40◦, both the theory and the

experiment show little change in the bandgap. For the full range of angles, the

experimental indirect gap increases by ∼ 140 meV compared to the indirect bandgap

of the registered bilayer. The quantitative increase of the PBE non-SOC indirect gap

is 200 meV.

The direct bandgap between Kv and Kc is less sensitive to misorientation betwen

the layers. This trend is consistent among the 4 TMDC materials and with the

experimental data [117, 119]. The increase in the bandgaps of the rotated structures

occurs due to shifts in the the absolute energies of the valence band edges.

The changes in the bandgap as a function of rotation angle occurs due to changes

in the interlayer vdW gap between the monolayers. This was previously explained

due to configuration dependent steric effects that occur due to the different positions

of the chalcogen atoms and the repulsive effects associated with the overlap of the pz

orbitals from each sulfur atom. [119] To further test this we optimized the misoriented

bilayer structures using two different semi-empirical corrections of vdW interactions,

the Grimme-D2 and the Tkatchenko-Scheffler correction. Each correction provides
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Figure 4.3: (Color online) Band gap energy as a function of rotation angle for MoS2

(�), MoSe2 (◦), WS2 (4), WSe2 (O)

quantitatively similar interlayer van-der-Waal gap distances as a function of rotation

angle. In the misoriented bilayers, the chalcogen atoms at the van-der-Waal interface

have out-of-plane undulations up to 0.004Å around the mean z-coordinate of the

chalcogen atoms along the c-axis of the bilayer structure. Hence, the interlayer van-

der-Waal gap, dvdW , is defined as the distance between the average value of the z-

coodinates of the chalcogen atoms at the interface between two monolayers. Rotation

of the bilayer TMDC structures increases the vdW gap, dvdW , between the two layers

by as much as 9.7% compared to the vdW gap of the registered bilayer with 2H

stacking. The values of dvdW for all structures are given in Table 4.1 . The increase

in dvdW as a function of rotation angle with respect to the 0◦ structure is illustrated

in Fig. 4.4
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Figure 4.4: (Color online) Change in the van der Waals gap, ∆dvdW = dvdW(θ) −
dvdW(0), as a function of rotation angle for MoS2 (�), MoSe2 (◦), WS2 (4), WSe2 (O

The increased separation between the rotated layers reduces the interlayer cou-

pling. For the oriented and rotated bilayers of MoS2, MoSe2, WS2, the valence band

is at Γ and the conduction band is at K. For the oriented and rotated bilayers of

WSe2, the valence band is at K and the conduction band edge is at Σ. Since the

band edges at Γv and Kc are primarily composed of pz and dz2 orbitals from the

chalcogen and metal atoms [1, 107] they are more sensitive to rotation and changes

in interlayer coupling. The Kv valley is composed of dxy, dx2 and pxy orbitals which

makes it insensitive to changes in twist angle. This reduction in interlayer coupling

leads to shifts in the Γv, Kc and Σc valleys. The largest shift in energy is associated

with the largest change in the interlayer vdW gap.
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4.4 Conclusion

The electronic structure of bilayer MoS2, MoSe2, WS2 and WSe2 rotated by 21.78◦,

27.79◦ and 13.17◦ are calculated using DFT with the PBE functional and the results

are compared to the unrotated structures. Comparisons are made to calculations

with spin-orbit coupling and the geometries of the bilayer structures optimized with

the Grimme-D2 and the TS corrections applied are compared. Rotation of the bilayer

structures increases the van-der-Waal distance between the individual monolayers by

upto 9.7%, which reduces the interlayer coupling and increases the magnitude of the

indirect bandgap for each material. The reduced interlayer coupling is driven by shifts

in the absolute positions of the valence band Γv valley.
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Chapter 5

Electronic and thermoelectric

properties of van der Waals

materials exhibiting ring shaped

valence bands

5.1 Introduction

The electronic bandstructure of many two-dimensional (2D), van der Waals (vdW)

materials qualitatively changes as the thickness is reduced down to a few mono-

layers. One well known example is the indirect to direct gap transition that oc-

curs at monolayer thicknesses of the Mo and W transition metal dichalcogenides

(TMDCs) [39]. Another qualitative change that occurs in a number of 2D materi-

als is the inversion of the parabolic dispersion at a band extremum into a ‘Mexican

hat’ dispersion. [128–130] Mexican hat dispersions are also referred to as a Lifshiftz

transition [129,131,132], an electronic topological transition [133] or a camel-back dis-
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persion [134,135]. In a Mexican hat dispersion, the Fermi surface near the band-edge

is approximately a ring in k-space, and the radius of the ring can be large, on the

order of half of the Brillouin zone. The large degeneracy coincides with a singularity

in the two-dimensional (2D) density of states close to the band edge. A similar feature

occurs in monolayer Bi due to the Rashba splitting of the valence band. [136] This

also results in a valence band edge that is a ring in k-space although the diameter

of the ring is generally smaller than that of the Mexican hat dispersion. This also

results in a valence band edge that is a ring in k-space although the diameter of the

ring is generally smaller than that of the Mexican hat dispersion.

Mexican hat dispersions are relatively common in few-layer two-dimensional ma-

terials. Ab-initio studies have found Mexican hat dispersions in the valence band

of many few-layer III-VI materials such as GaSe, GaS, InSe, InS [129, 130, 137–140].

Experimental studies have demonstrated synthesis of monolayers and or few layers

of GaS, GaSe and InSe thin films. [10, 137, 141–145]. Monolayers of Bi2Te3 [70], and

Bi2Se3 [146] also exhibit a Mexican hat dispersion in the valence band. The conduc-

tion and valence bands of bilayer graphene distort into Mexican hat dispersions when

a a vertical field is applied across AB-stacked bilayer graphene. [128, 132, 147] The

large density of states of the Mexican hat dispersion can lead to instabilities near the

Fermi level, and two different ab initio studies have recently predicted Fermi-level

controlled magnetism in monolayer GaSe and GaS [139, 140]. The singularity in the

density of states and the large number of conducting modes at the band edge can

enhance the Seebeck coefficient, power factor, and the thermoelectric figure of merit

ZT. [148–150] Prior analytical studies of the thermoelectric power due to a Lifshitz

transition demonstrated the thermopower is enhanced by up to a factor of 5 with

respect to the thermopower for a constant energy iso-surface. [151].

The direct conversion from heat to electricity enabled by solid state thermoelectric
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technology has been responsible for several NASA deep-space missions [152], exhaust

heat recovery [153], and niche applications in the microelectronics industry. [154]

Recent advancements in the ability to engineer the microstructure of a material com-

bined with qualitative and quantitative predictions of the electronic and thermoelec-

tric properties of materials provided by ab-initio and empirical simulations has led

to a flurry of activity to identify suitable thermoelectric materials, as discussed in a

number of review articles. [42,155,156] The thermoelectric performance of a material

is gauged by the dimensionless figure of merit, ZT. The traditional way to maximize

ZT is to either increase the power factor, PF, [157,158] or reduce the lattice contribu-

tion to the thermal conductivity. [159,160] Enhancing the density of states enhances

the power factor.

Prior studies have achieved this enhancement in the density of states by using

nanowires [41, 161], introducing resonant doping levels [149, 150], high band degen-

eracy [1, 162, 163], and using the Kondo resonance associated with the presence of

localized d and f orbitals [164–166]. The large increase in ZT predicted for mono-

layer Bi2Te3 resulted from the formation of a Mexican hat bandstructure and its large

band-edge degeneracy [45,70]. Efforts to engineer the bandstructure often rely on the

use of nanostructuring or the controlled introduction of dopants in quantum confined

structures. [157, 158, 167, 168] Alteration of the material structure often leads to a

degradation of one of the interrelated parameters; electrical conductivity, Seebeck

or the thermal conductivity, which leads to a concomitant reduction in the thermo-

electric figure of merit, ZT. Identifying materials with optimum electronic structures

that intrinsically exhibit a high density of states could decouple the inter-dependent

material parameters.

In the 2D materials mentioned above, the optimum electronic structure emerges

at few-monolayer thicknesses. Used as single films, these materials could provide local
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on-chip thermal management via active cooling [169], or they could perform energy

scavenging [170]. An example of local on-chip passive thermal management was

recently demonstrated using graphene as a heat spreader. [171] A common problem

with exploiting low-dimensional materials is that to provide macroscopic power or

transport macroscopic quantites of heat, a larger cross-section is required. [172] To

achieve this, few-layer films would have to be stacked but separated sufficiently to

prevent the interlayer coupling from destroying the few-layer electronic structure.

One recent demonstrated approach is using intercalation to separate the layers. [173,

174] This approach reduces the deleterious effect of parallel heat conduction paths,

provided that the filling factors of the intercalated gaps are relatively low such that

the gaps primarily consist of vacuum.

This work theoretically investigates the electronic and thermoelectric properties

of a variety of van der Waals materials that exhibit a Mexican hat dispersion or

Rashba dispersion. The Mexican hat and Rashba dispersions are first analyzed using

an analytical model. Then, density functional theory is used to calculate the elec-

tronic and thermoelectric properties of bulk and one to four monolayers of GaX, InX

(X = Se, S), Bi2Se3, monolayer Bi(111), and bilayer graphene as a function of verti-

cal electric field. Figure 5.1 illustrates the investigated structures that have either a

Mexican hat or Rashba dispersion. The analytical model combined with the numeri-

cally calculated orbital compositions of the conduction and valence bands explain the

layer dependent trends that are relatively consistent for all of the few-layer materials.

While numerical values are provided for various thermoelectric metrics, the emphasis

is on the layer-dependent trends and the analysis of how the bandstructure affects

both the electronic and thermoelectric properties. The metrics are provided in such

a way that new estimates can be readily obtained given new values for the electrical

or thermal conductivity.
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(a) GaS, GaSe, InS, InSe

(c) Bilayer Graphene
(d) Bi (111)

(b) Bi2Se3

Figure 5.1: (Color online) Atomic structures of van-der Waals materials with a Mex-
ican hat or Rashba dispersion: (a) Bilayer III-VI material. The β phase stacking
geometry is shown at right. (b)Bi2Se3, (c) Bilayer Graphene and (d) Bi(111) mono-
layer

5.2 Models and Methods

5.2.1 Landauer Thermoelectric Parameters

In the linear response regime, the electronic and thermoelectric parameters are cal-

culated within a Landauer formalism. The basic equations and their equivalence to

standard equations resulting from the Boltzmann transport equation have been de-

scribed previously, [85, 86] and we list them below for convenience. The equations

for the electronic conductivity (σ), the electronic thermal conductivity (κe), and the
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Seebeck coefficient (S) are

σ = (2q2/h)I0 (Ω−1m2−D), (5.1)

κe = (2Tk2B/h)(I2 − I21/I0) (Wm2−DK−1), (5.2)

S = −(kB/q)
I1
I0

(V/K), (5.3)

with

Ij = L

∫ ∞
−∞

(
E − EF
kBT

)j
T̄ (E)

(
− ∂f
∂E

)
dE (5.4)

where L is the device length, D is the dimensionality (1, 2, or 3), q is the magnitude

of the electron charge, h is Planck’s constant, kB is Boltzmann’s constant, and f is

the Fermi-Dirac factor. In the diffusive limit, the transmission function T̄ is

T̄ (E) = M(E)λ(E)/L (5.5)

where M(E) as the density of modes, and λ(E) is the electron mean free path. The

power factor (PF ) and the thermoelectric figure of merit (ZT ) are given by PF = S2σ

and

ZT = S2σT/(κl + κe) (5.6)

where κl is the lattice thermal conductivity.

5.2.2 Analytical Models

As the thicknesses of the considered layered materials are reduced to a few monolayers,

the valence band dispersion transitions from parabolic to Mexican hat. In this section,

we consider analytical models to understand the effect of this band inversion on the

electronic and thermoelectric properties. The trends and insight provided by the
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analytical models provide a guide to understanding the numerical results that follow.

The single-spin density of modes for transport in the x direction is [85,175]

M(E) =
2π

LD

∑
k

δ(E − ε(k))
∂ε

∂kx
(5.7)

where D is the dimensionality, E is the energy, and ε(k) is the band dispersion. The

sum is over all values of k such that ∂ε
∂kx

> 0, i.e. all momenta with positive velocities.

The dimensions are 1/LD−1, so that in 2D, M(E) gives the number of modes per unit

width at energy E. If the dispersion is only a function of the magnitude of k, then

Eq. (5.7) reduces to

M(E) =
ND

(2π)D−1

∑
b

kD−1b (E) (5.8)

where ND = π for D = 3, ND = 2 for D = 2, and ND = 1 for D = 1. kb is the

magnitude of k such that E = ε(kb), and the sum is over all bands and all values of kb

within a band. When a band-edge is a ring in k-space with radius k0, the single-spin

2D density of modes at the band edge is

M(Eedge) = N
k0
π
, (5.9)

where N is either 1 or 2 depending on the type of dispersion, Rashba or Mexican hat.

Thus, the 2D density of modes at the band edge depends only on the radius of of the

k-space ring. For a two dimensional parabolic dispersion, E = ~2k2
2m∗

, the radius is 0,

and Eq. (5.8) gives a the single-spin density of modes of [87]

Mpar(E) =

√
2m∗E

π~
. (5.10)

In real III-VI materials, there is anisotropy in the Fermi surfaces, and a 6th order,
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angular dependent polynomial expression is provided by Zólyomi et al. that captures

the low-energy anisotropy [129, 130]. To obtain physical insight with closed form

expressions, we consider a 4th order analytical form for an isotropic Mexican hat

dispersion

ε(k) = ε0 −
~2k2

2m∗
+

1

4ε0

(
~2k2

2m∗

)2

(5.11)

where ε0 is the height of the hat at k = 0, and m∗ is the magnitude of the effective

mass at k = 0. A similar quartic form was previously used to analyze the effect of

electron-electron interactions in biased bilayer graphene [128]. The function is plotted

in Figure 5.2(a). The band edge occurs at ε = 0, and, in k-space, in two dimensions

(2D), it forms a ring in the kx − ky plane with a radius of

kMH
0 =

2
√
m∗ε0
~

. (5.12)

For the two-dimensional Mexican hat dispersion of Eq. (5.11), the single-spin density

of modes is

MMH(E) =


kMH
0

π

(√
1 +

√
E
ε0

+

√
1−

√
E
ε0

)
(0 ≤ E ≤ ε0)

kMH
0

π

(√
1 +

√
E
ε0

)
(ε0 ≤ E) .

(5.13)

Figure 5.2(b) shows the density of mode distributions plotted from Eqs. (5.10) and

(5.13). At the band edge (E = 0), the single-spin density of modes of the Mexican

hat dispersion is finite,

MMH(E = 0) =
2kMH

0

π
. (5.14)

The Mexican hat density of modes decreases by a factor of
√

2 as the energy increases

from 0 to ε0, and then it slowly increases. The step-function turn-on of the density of
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(c)

Figure 5.2: (Color online) (a) Comparison of a Mexican hat dispersion (red) and
a Rashba dispersion (green). The band edges are rings in k-space with radius k0
illustrated for the Mexican hat band by the orange dotted circle. The height of the
Mexican hat band at k = 0 is ε0 = 0.111 eV. The Rashba parameter is 1.0 eV Å, and
the effective mass for both dispersions is 0.5m0. (b) Density of modes of the Mexican
hat dispersion (red) versus parabolic band (blue). The parabolic dispersion also has
an effective mass of 0.5. (c) Room temperature Seebeck coefficients (solid lines) and
carrier concentrations (broken lines) of the Mexican hat band (red) and the parabolic
band (blue) as a function of Fermi level position, EF . (d) Room temperature ballistic
power factor of the Mexican hat band (red) and the parabolic band (blue) calculated
from Eqs. (5.1), (5.3), and (5.4) with T (E) = 1.

modes is associated with a singularity in the density of states. The single-spin density

of states resulting from the Mexican hat dispersion is

DMH(E) =


m∗

π~2
√

ε0
E

(0 ≤ E ≤ ε0)

m∗

2π~2
√

ε0
E

(ε0 < E) .
(5.15)

Rashba splitting of the spins also results in a valence band edge that is a ring in

k-space. The Bychkov-Rashba model with linear and quadratic terms in k gives an
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analytical expression for a Rashba-split dispersion, [176]

ε(k) = ε0 +
h2k2

2m∗
± αRk (5.16)

where the Rashba parameter, αR, is the strength of the Rashba splitting. In Eq.

(5.16), the bands are shifted up by ε0 =
α2
Rm
∗

2~2 so that the band edge occurs at ε = 0.

The radius of the band edge in k-space is

kR0 =
m∗αR
~2

=

√
2m∗ε0
~

. (5.17)

The energy dispersion of the split bands is illustrated in Figure 5.2(a). The density

of modes, including both spins, resulting from the dispersion of Eq. (5.16) is

M2 spins
R (E) =


2kR0
π

(0 ≤ E ≤ ε0)

2kR0
π

√
E
ε0

(ε0 ≤ E)
(5.18)

For 0 ≤ E ≤ ε0, the density of modes is a step function and the height is determined

by αR and the effective mass. Values for αR vary from 0.07 eVÅ in InGaAs/InAlAs

quantum wells to 0.5 eVÅ in the Bi(111) monolayer. [177] The density of states

including both spins is

DR(E) =


m∗

π~2
√

ε0
E

(0 ≤ E ≤ ε0)

m∗

π~2 (ε0 < E)
(5.19)

In general, we find that the diameter of the Rashba k-space rings are less than the

diameter of the Mexican hat k-space rings, so that the enhacements to the thermo-

electric parameters are less from Rashba-split bands than from the inverted Mexican

hat bands.
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Figure 5.2(c) compares the Seebeck coefficients and the electron densities calcu-

lated from the Mexican hat dispersion shown in Fig. 5.2(a) and a parabolic disper-

sion. The quantities are plotted versus Fermi energy with the conduction band edge

at E = 0. An electron effective mass of m∗ = 0.5m0 is used for both dispersions, and,

for the Mexican hat, ε0 = 0.111 eV which is the largest value for ε0 obtained from our

ab-initio simulations of the III-VI compounds. The temperature is T = 300 K. The

Seebeck coefficients are calculated from Eqs. (5.3), (5.4), and (5.5) with T (E) = 1.

The electron densities are calculated from the density of state functions given by two

times Eq. (5.15) for the Mexican hat dispersion and by m∗/π~2 for the parabolic dis-

persion. The electron density of the Mexican hat dispersion is approximately 6 times

larger than that of the parabolic dispersion at a fixed Fermi energy. This is a result of

the singular density of states at the bandedge of the Mexican hat dispersion. There

are two important points to take away from this plot. At the same electron density,

the Fermi level of the Mexican hat dispersion is much lower than that of the parabolic

dispersion. As a result, at the same electron density, the Seebeck coefficient of the

Mexican hat dispersion is much larger than the Seebeck coefficient of the parabolic

dispersion.

Figure 5.2(d) compares the ballistic power factors calculated from the Mexican hat

dispersion shown in Fig. 5.2(a) and the parabolic dispersion, again with m∗ = 0.5m0

for both dispersions. The temperature is T = 300 K. The ballistic power factor is

calculated from Eqs. (5.1), (5.3), (5.4), and (5.5) with T (E) = 1. Eqs. (5.10) and

(5.13) for the density of modes are used in Eq. (5.5). The peak power factor of the

Mexican hat dispersion occurs when EF = -32 meV, i.e. 32 meV below the conduction

band edge. The peak power factor of the parabolic dispersion occurs when EF = -9.5

meV. At the peak power factors, the value of I1 of the Mexican hat dispersion is 3.5

times larger than I1 of the parabolic dispersion, and I0 of the Mexican hat dispersion
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is 3.2 times larger than I0 of the parabolic dispersion. I0 gives the conductivity, the

ratio I1/I0 gives the Seebeck coefficient, and I21/I0 gives the power factor. Therefore,

the inversion of the parabolic band into a Mexican hat band results in an increase

in the Seebeck coefficient and a large increase in the peak power factor. This is the

trend that we consistently observe in the numerical simulations as the bands invert

from a parabolic to a Mexican hat dispersion as the number of layers is reduced.

From the Landauer-Büttiker perspective of Eq. (5.5), the increased conductivity

results from the increased number of modes near the bandedge as shown in Fig.

5.2(b). From a more traditional perspective, the increased conductivity results from

an increased density of states resulting in an increased charge density n. At their

peak power factors, the charge density of the Mexican hat dispersion is 4.9 × 1012

cm−2, and the charge density of the parabolic dispersion is 1.5 × 1012 cm−2. The

charge density of the Mexican hat dispersion is 3.3 times larger than the charge

density of the parabolic dispersion even though the Fermi level for the Mexican hat

dispersion is 22 meV less than the Fermi level of the parabolic dispersion. This, in

general, will result in a higher conductivity. These trends are consistently followed by

the numerical results. The above analytical discussion illustrates the basic concepts

and trends concerning the relationship between the Mexican hat dispersion and the

electronic and thermoelectric parameters, and it motivates and guides the following

numerical investigation of various van der Waals materials exhibiting either Mexican

hat or Rashba dispersions.

5.2.3 Computational Methods

Ab-initio calculations of the bulk and few-layer structures (one to four layers) of GaS,

GaSe, InS, InSe, Bi2Se3, Bi(111) surface, and bilayer graphene are carried out using
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density functional theory (DFT) with a projector augmented wave method [78] and

the Perdew-Burke-Ernzerhof (PBE) type generalized gradient approximation [79,80]

as implemented in the Vienna ab-initio Simulation Package (VASP). [81, 82] The

vdW interactions in GaS, GaSe, InS, InSe and Bi2Se3 are accounted for using a semi-

empirical Grimme-D2 correction to the Kohn-Sham energies when optimizing the bulk

structures of each material. [83] All atomic positions were fully optimized until the

forces acting on each atom are less than 0.01 eV/Å. The thickness of each bulk unit

cell optimized with the Grimme-D2 potential is within 1.6% of the bulk experimental

data for each material. For the GaX, InX (X = S,Se), Bi(111) monolayer, and Bi2Se3

structures, a Monkhorst-Pack scheme is used for the integration of the Brillouin zone

with a k-mesh of 12 x 12 x 6 for the bulk structures and 12 x 12 x 1 for the thin-films.

The energy cutoff of the plane wave basis is 300 eV. The electronic bandstructure

calculations include spin-orbit coupling (SOC) for the GaX, InX, Bi(111) and Bi2Se3

compounds. To verify the results of the PBE band structure calculations of the GaX

and InX compounds, the electronic structures of one to four monolayers of GaS and

InSe are calculated using the Heyd-Scuseria-Ernzerhof (HSE) functional. [84] The

HSE calculations incorporate 25% short-range Hartree-Fock exchange. The screening

parameter µ is set to 0.2 Å−1. For the calculations on bilayer graphene, a 32 ×

32 × 1 k-point grid is used for the integration over the Brillouin zone. The energy

cutoff of the plane wave basis is 400 eV. 15Å of vacuum spacing was added to the

slab geometries of all few-layer structures. The optimized lattice parameters for

each of the materials studied are listed in Table 5.1 below. Band structures of the

monolayer and few-layer structures are calculated using the lattice constants of the

optimized bulk structures. The conduction and valence band effective masses at Γ

are calculated for each material by fitting the dispersion to a sixth order polynomial

and then calculating 1
m∗

= 1
~2
∂2E
∂k2

.
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a0(Å) c0(Å) d (Å) dvdW (Å) aexpt0 (Å) cexpt0 (Å) dexpt (Å)

GaS 3.630 15.701 4.666 3.184 3.587 15.492 4.599

GaSe 3.755 15.898 4.870 3.079 3.752 15.950 4.941

InS 3.818 15.942 5.193 2.780 . . . . . . . . .

InSe 4.028 16.907 5.412 3.040 4.000 16.640 5.557

Bi2Se3 4.140 28.732 7.412 3.320 4.143 28.636 . . .

BLG 2.459 - 3.349 3.349 2.460 - 3.400

Bi(111) 4.34 - 3.049 - 4.54 - -

Table 5.1: Calculated and experimental properties of bulk Mexican-hat materials
GaS, GaSe, InS, InSe, Bi2Se3, bilayer graphene (BLG), and Bi(111). The in-plane
and c-axis lattice constants are a0 and c0, respectively. The thickness of an individual
layer is d, and the van-der-Waal distance between individual monolayers is dvdW . The
calculated thickness, d, is the atom-center to atom-center distance between the top
and bottom chalcogen atoms of a single layer in GaS, GaSe, InS, InSe, Bi2Se3 and
atom center to atom center distance of the top and bottom carbon atoms in bilayer
graphene. The thickness d in monolayer Bi is the height of the buckling distance
between the two Bi atoms. Experimental values when available [7–12] are included
for comparison.

The ab-initio calculations of the electronic structure are used as input for calcu-

lating the thermoelectric parameters. The two quantities requred are the density of

states and the density of modes. The density of states is directly provided by VASP.

The density of modes calculations are performed by integrating over the first Bril-

louin zone using a converged k-point grid, 51×51×10 k-points for the bulk structures

and 51 × 51 × 1 k-points for the III-VI, Bi2Se3 and Bi(111) thin film structures. A

101×101×1 grid of k-points is required for the density of mode calculations on bilayer

graphene. The details of the formalism are provided in several prior studies. [1,45,86]

The temperature dependent carrier concentrations for each material and thickness are

calculated from the density-of-states obtained from the ab-initio simulations. To ob-

tain a converged density-of-states a minimum k-point grid of 72×72×36 (72×72×1) is

required for the bulk (monolayer and few-layer) III-VI and Bi2Se3 structures. For the

density-of-states calculations on bilayer graphene and monolayer Bi(111) a 36×36×1
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grid of k-points is used.

The calculation of the in-plane thermoelectric parameters, such as conductivity,

the power factor, and ZT , requires values for the electron and hole mean free paths

and the lattice thermal conductivity. Electron and hole scattering are included using

an average mean free path, λ determined by matching Eq. (5.1) to literature conduc-

tivity data using an average value for λ in Eq. (5.5). The definition of the average λ

is

λ =

∫
dEM(E)λ(E)

(
∂f
∂E

)∫
dEM(E)

(
∂f
∂E

) . (5.20)

It is the average mean free path per mode in the thermal transport window of a few

kBT defined by (−∂f/∂E). For all of the few-layer materials, the peak ZT occurs

when EF is in the band gap, below the conduction band edge for n-type material

or above the valence band edge for p-type material. Therefore, only the low-energy

states within a few kBT of the band-edges contribute to the transport.

For GaS, GaSe, InS and InSe, λ0 = 25 nm gives the best agreement with experi-

mental data. [178–181] The room temperature bulk n-type electrical conductivity of

GaS, GaSe, InS and InSe was reported to be 0.5 Ω−1m−1, 0.4 Ω−1m−1, 0.052 Ω−1m−1

and 0.066 Ω−1m−1, respectively, at a carrier concentration of 1016 cm−3. Using λ0 = 25

nm for bulk GaS, GaSe and InSe we obtain an electrical conductivity of 0.58 Ω−1m−1,

0.42 Ω−1m−1, 0.058 Ω−1m−1 and 0.071 Ω−1m−1, respectively at the same carrier con-

centration. For the Bi(111) monolayer surface, the electrical conductivity at 300K is

reported to be of 0.011 Ω−1m−1 at a carrier concentration of 2.6×1018 cm−3. [182] An

electron and hole mean free path of 4.7nm gives the best agreement with the electri-

cal conductivity of bulk Bi. For Bi2Se3 an electron mean free path, λe=5.2nm and a

hole mean free path, λp=2.1 nm, gives the best agreement with experimental data on

conductivity for bulk single crystal Bi2Se3. [183] The room temperature bulk n-type
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electrical conductivity is reported to be 1.5 Ω−1m−1 at a carrier concentration of 1017

cm−3 and the p-type electrical conductivity at room temperature is 4.8 Ω−1m−1 at a

carrier concentration of 1019 cm−3 For bilayer graphene, λ0 = 88 nm gives the best

agreement with experimental data on conductivity at room temperature. [184]

Values for the lattice thermal conductivity are also taken from available experi-

mental data. The experimental value of 10 Wm−1K−1 reported for the in-plane lat-

tice thermal conductivity κl of bulk GaS at room temperature is used for the gallium

chalcogenides. [185] The experimental, bulk, in-plane, lattice thermal conductivities

of 7.1 Wm−1K−1 and 12.0 Wm−1K−1 measured at room temperature are used for InS

and InSe, respectively. [186] For monolayer Bi(111), the calculated κl from molecular

dynamics [187] at 300K is 3.9 Wm−1K−1. For Bi2Se3, the measured bulk κl value

at 300K is 2 Wm−1K−1. [183, 188] A value of 2000 Wm−1K−1 is used for the room

temperature in-plane lattice thermal conductivity of bilayer graphene. This is consis-

tent with a number of experimental measurements and theoretical predictions on the

lattice thermal conductivity of bilayer graphene. [189, 190] Prior studies of thermal

conductivity in the layered chalcogenides and few layer graphene have demonstrated

that κl can vary by up to a factor of 2 as the film thickness decreases from bulk to

a monolayer. [103,106,191] Maximum and minimum values for ZT are calculated for

GaS, GaSe, InS, InSe and Bi2Se3 using the bulk values of κl and twice the bulk values

of κl.

When evaluating ZT in Eq. (5.6) for the 2D thin film structures, the bulk lattice

thermal conductivity is multiplied by the film thickness. When tabulating values

of the electrical conductivity and the power factor of the 2D films, the calculated

conductivity from Eq. (5.1) is divided by the film thickness.

Much of the experimental data from which the values for λ0 and κl have been de-

termined are from bulk studies, and clearly these values might change as the materials
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are thinned down to a few monolayers. However, there are presently no experimental

values available for few-layer III-VI and Bi2Se3 materials. Our primary objective is

to obtain a qualitative understanding of the effect of the bandstructure in these ma-

terials on their thermoelectric properties. To do so, we use the above values for λ0

and κl to calculate ZT for each material as a function of thickness. We tabulate these

values and provide the corresponding values for the electron or hole density, Seebeck

coefficient, and conductivity at maximum ZT . It is clear from Eqs. (5.3) and (5.4)

that the Seebeck coefficient is relatively insensitive to the value of the mean free path.

Therefore, if more accurate values for the conductivity or κl become available, new

values for ZT can be estimated from Eq. (5.6) using the given Seebeck coefficient

and replacing the electrical and/or thermal conductivity.

5.3 Numerical Results

5.3.1 III-VI Compounds GaX and InX (X = S, Se)

The lattice parameters of the optimized bulk GaX and InX compounds are summa-

rized in Table 5.1. In this study, the default stacking is the β phase illustrated in Fig.

5.2a. The β phase is isostructural to the AA’ stacking order in the 2H polytypes of

the molybdenum and tungsten dichalcogenides. [115] The bandgap of the one to four

monolayer structures is indirect for GaS, GaSe, InS and InSe. Figure 5.3 illustrates

the PBE band structure for one-layer (1L) through four-layers (4L), eight-layer (8L)

and bulk GaS. The PBE SOC band gaps and energy transitions for each of the III-

VI materials and film thicknesses are listed in Table 5.2. For GaS, the HSE SOC

values are also listed. The effective masses extracted from the PBE SOC electronic

bandstructure are listed in Table 5.3.
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Structure Transition GaS GaSe InS InSe

1L Ev to Γc 2.563 (3.707) 2.145 2.104 1.618

Ev to Kc 2.769 (3.502) 2.598 2.684 2.551

Ev to Mc 2.549 (3.422) 2.283 2.520 2.246

2L Ev to Γc 2.369 (3.156) 1.894 1.888 1.332

Ev to Kc 2.606 (3.454) 2.389 2.567 2.340

Ev to Mc 2.389 (3.406) 2.065 2.353 2.025

3L Ev to Γc 2.288 (3.089) 1.782 1.789 1.152

Ev to Kc 2.543 (3.408) 2.302 2.496 2.201

Ev to Mc 2.321 (3.352) 1.967 2.273 1.867

4L Ev to Γc 2.228 (3.011) 1.689 1.749 1.086

Ev to Kc 2.496 (3.392) 2.224 2.471 2.085

Ev to Mc 2.267 (3.321) 1.879 2.242 1.785

Bulk Γv to Γc 1.691 (2.705) 0.869 0.949 0.399

Γv to Kc 1.983 (2.582) 1.435 1.734 1.584

Γv to Mc 1.667 (2.391) 0.964 1.400 1.120

Table 5.2: PBE SOC calculations of the bandgap energies and energy transitions
between the valence band edge of the Mexican hat band (Ev) and the conduction (c)
band valleys for 1L to 4L GaS, GaSe, InS and InSe. The bandgap at each dimension is
highlighted in bold text. The HSE-SOC energy transitions for GaS are in parentheses.

Structure GaS GaSe InS InSe GaS GaSe InS InSe

Hole Effective Mass (m0) Electron Effective Mass (m0)

1L 0.409 0.544 0.602 0.912 0.067 (0.698) 0.053 0.080 0.060

2L 0.600 0.906 0.930 1.874 0.065 (0.699) 0.051 0.075 0.055

3L 0.746 1.439 1.329 6.260 0.064 (0.711) 0.050 0.074 0.053

4L 0.926 2.857 1.550 3.611 0.064 (0.716) 0.049 0.073 0.055

Table 5.3: Ab-initio calculations of the hole and electron effective masses at the Γ
valley of the valence band and conduction band respectively for each structure in
units of the free electron mass (m0). The conduction band effective masses at Mc are
included in parentheses for one to four layers of GaS.
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Figure 5.3: (Color online) PBE SOC band structure of GaS: (a) 1L, (b) 2L, (c) 3L
and (d) 4L, (e) 8L and (f) bulk GaS.

The conduction band minimum of GaSe, InS, and InSe are at Γ for all layer

thicknesses, from monolayer to bulk. The conduction band minimum of monolayer

GaS is at M. This result is consistent with that of Zólyomi et al. [129]. However, for

all thicknesses greater than a monolayer, the conduction band of GaS is at Γ. Results

from the PBE functional give GaS conduction valley separations between M and Γ

that are on the order of kBT at room temperature, and this leads to qualitatively

incorrect results in the calculation of the electronic and thermoelectric parameters.

For the three other III-VI compounds, the minimum PBE-SOC spacing between the

conduction Γ and M valleys is 138 meV in monolayer GaSe. For InS and InSe, the

minimum conduction Γ-M valley separations also occur for a monolayer, and they are

416 eV and 628 eV, respectively. For monolayer GaS, the HSE-SOC conduction M

valley lies 80 meV below the K valley and 285 meV below the Γ valley. At two to four
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layer thicknesses, the order is reversed, the conduction band edge is at Γ, and the

energy differences between the valleys increase. For the electronic and thermoelectric

properties, only energies within a few kBT of the band edges are important. Therefore,

the density of modes of n-type GaS is calculated from the HSE-SOC bandstructure.

For p-type GaS and all other materials, the densities of modes are calculated from

the PBE-SOC bandstructure.

The orbital composition of the monolayer GaS conduction Γ valley contains 63%

Ga s orbitals and 21% S pz orbitals. The orbital compositions of the other III-VI

conduction Γ valleys are similar. As the film thickness increases from a monolayer

to a bilayer, the conduction Γ valleys in each layer couple and split by 203 meV as

shown in Fig. 5.3b. Thus, as the film thickness increases, the number of low-energy

Γ states near the conduction band-edge remains the same, or, saying it another way,

the number of low-energy Γ states per unit thickness decreases by a factor of two as

the the number of layers increases from a monolayer to a bilayer. This affects the

electronic and thermoelectric properties.

The Mexican hat feature of the valence band is present in all of the 1L - 4L GaX

and InX structures, and it is most pronounced for the monolayer structure shown in

Fig. 5.3a. For monolayer GaS, the highest valence band at Γ is composed of 79%

sulfur pz orbitals (pSz ). The lower 4 valence bands at Γ are composed entirely of sulfur

px and py orbitals (pSxy). When multiple layers are brought together, the pSz valence

band at Γ strongly couples and splits with a splitting of 307 meV in the bilayer. For

the 8-layer structure in Fig. 5.3e, the manifold of 8 pSz bands touches the manifold of

pSxy bands, and the bandstructure is bulklike with discrete kz momenta. In the bulk

shown in Fig. 5.3f, the discrete energies become a continuous dispersion from Γ to A.

At 8 layer thickness, the large splitting of the pSz valence band removes the Mexican

hat feature, and the valence band edge is parabolic as in the bulk. The nature and
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orbital composition of the bands of the 4 III-VI compounds are qualitatively the same.

Material ε0 (meV) k0 (nm−1)
(Theory/Stacking Order) 1L, 2L, 3L, 4L 1L, 2L, 3L, 4L

GaS 111.2, 59.6, 43.8, 33.0 3.68, 2.73, 2.52, 2.32
GaS (no-SOC) 108.3, 60.9, 45.1, 34.1 3.16, 2.63, 2.32, 2.12

GaS (HSE) 97.9, 50.3, 40.9, 31.6 2.81, 2.39, 2.08, 1.75
GaS (AA) 111.2, 71.5, 57.1, 47.4 3.68, 2.93, 2.73, 2.49

GaSe 58.7, 29.3, 18.1, 10.3 2.64, 2.34, 1.66, 1.56
GaSe (ε) 58.7, 41.2, 23.7 , 5.1 2.64, 1.76, 1.17 , 1.01

InS 100.6, 44.7, 25.8, 20.4 4.03, 3.07, 2.69, 2.39
InSe 34.9, 11.9, 5.1, 6.1 2.55, 1.73, 1.27, 1.36

InSe (HSE) 38.2, 15.2, 8.6, 9.2 2.72, 2.20, 1.97, 2.04
Bi2Se3 314.7, 62.3, 12.4, 10.4 3.86, 1.23, 1.05, 0.88

Bi2Se3 (no-SOC) 350.5, 74.6, 22.8, 20.1 4.19, 1.47, 1.07, 1.02

Table 5.4: Values of ε0 and k0 are listed in order of thicknesses: 1L, 2L, 3L, and 4L.
The default level of theory is PBE with spin-orbit coupling, and the default stacking
is AA’. Only deviations from the defaults are noted.

In the few-layer structures, the Mexican hat feature of the valence band can be

characterized by the height, ε0, at Γ and the radius of the band-edge ring, k0, as

illustrated in Figure 5.2(b). The actual ring has a small anisotropy that has been

previously characterized and discussed in detail [129,130,139]. For all four III-VI com-

pounds of monolayer and few-layer thicknesses, the valence band maximum (VBM) of

the inverted Mexican hat lies along Γ−K, and it is slightly higher in energy compared

to the band extremum along Γ−M . In monolayer GaS, the valence band maximum

along Γ−K is 4.7 meV above the band extremum along Γ−M . In GaS, as the film

thickness increases from one layer to four layers the energy difference between the

two extrema decreases from 4.7 meV to 0.41 meV. The maximum energy difference

of 6.6 meV between the band extrema of the Mexican hat occurs in a monolayer of

InS. In all four III-VI compounds the energy difference between the band extrema

is maximum for the monolayer structure and decreases below 0.5 meV in all of the

materials for the four-layer structure. The tabulated values of k0 in Table 5.4 give the
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Figure 5.4: (Color online) Distribution of valence band modes per unit width versus
energy for (a) GaS, (b) GaSe, (c) InS and (d) InSe for 1L (blue), 2L (red), 3L (green)
and 4L (purple) structures. The midgap energy is set to E=0.

distance from Γ to the VBM in the Γ − K direction. Results calculated from PBE

and HSE functionals are given, and results with and without spin-orbit coupling are

listed. The effects of AA’ versus AA stacking order of GaS and AA’ versus ε stacking

order of GaSe [192,193] are also compared.

Table 5.4 shows that the valence band Mexican hat feature is robust. It is little

affected by the choice of functional, the omission or inclusion of spin-orbit coupling,

or the stacking order. A recent study of GaSe at the G0W0 level found that the

Mexican hat feature is also robust against many-electron self-energy effects. [139] For

all materials, the values of ε0 and k0 are largest for monolayers and decrease as the

film thicknesses increase. This suggests that the height of the step function density

of modes will also be maximum for the monolayer structures.

Figure 5.4 illustrates the valence band density of modes for 1L, 2L, 3L and 4L
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(a) GaS

(c) GaS

(d) GaSe (g) InS (j) InSe

(k) InSe

(l) InSe

Figure 5.5: (Color online) Seebeck coefficient, power factor and thermoelectric figure-
of-merit, ZT, of p-type (solid line) and n-type (broken line) 1L (blue), 2L (red), 3L
(green), 4L (purple) and bulk (black) (a)-(c) GaS, (d)-(f) GaSe, (g)-(i) InS and (j)-(l)
InSe at room temperature.

GaS, GaSe, InS and InSe. The valence band density of modes is a step function for

the few-layer structures, and the height of the step function at the valence band edge

is reasonably approximated by Eq. (5.14). The height of the numerically calculated

density of modes step function for monolayer GaS, GaSe, InS and InSe is 4.8 nm−1,

5.2 nm−1, 5.1 nm−1 and 3.4 nm−1 respectively. Using the values for k0 and Eq. (5.14)

and accounting for spin degeneracy, the height of the step function for monolayer

GaS, GaSe, InS and InSe is 4.1 nm−1, 3.4 nm−1, 5.1 nm−1 and 3.2 nm−1. The

height of the numerically calculated density of modes in GaS decreases by ∼ 30%

when the film thickness increases from one to four monolayers, and the value of k0

decreases by ∼ 38%. The height of the step function using Eq. (5.14) and k0 is

either underestimated or equivalent to the numerical density of modes. For all four

materials GaS, GaSe, InS and InSe, decreasing the film thickness increases k0 and the

height of the step-function of the band-edge density of modes. A larger band-edge

density of modes gives a larger power factor and ZT compared to that of the bulk.
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The p-type Seebeck coefficients, the p-type and n-type power factors, and the

thermoelectric figures-of-merit (ZT) as functions of carrier concentration at room

temperature for GaS, GaSe, InS and InSe are shown in Figure 5.5. The thermoelectric

parameters at T = 300 K of bulk and one to four monolayers of GaS, GaSe, InS and

InSe are summarized in Tables 5.5 - 5.12. For each material the peak p-type ZT

occurs at a monolayer thickness. The largest room temperature p-type ZT occurs in

monolayer InS. At room temperature, the peak p-type (n-type) ZT values in 1L, 2L,

3L and 4L GaS occur when the Fermi level is 42 meV, 38 meV, 34 meV and 30 meV

(22 meV, 17 meV, 11 meV, and 7 meV) above (below) the valence (conduction) band

edge, and the Fermi level positions in GaSe, InS and InSe change in qualitatively

the same way. The p-type hole concentrations of monolayer GaS, GaSe, InS and

InSe at the peak ZT are enhanced by factors of 9.7, 10.8, 7.2 and 5.5 compared

to those of their respective bulk structures. At the peak p-type room-temperature

ZT, the Seebeck coefficients of monolayer GaS, GaSe, InS and InSe are enhanced by

factors of 1.3, 1.4, 1.3, and 1.3, respectively, compared to their bulk values. However,

the monolayer and bulk peak ZT values occur at carrier concentrations that differ

by an order of magnitude. At a fixed carrier concentration, the monolayer Seebeck

coefficients are approximately 1.4 times larger than the bulk Seebeck coefficients. The

p-type power factor (PF) at the peak ZT for 1L GaS is enhanced by a factor of 17

compared to that of bulk GaS. Assuming a constant κl for the bulk and few-layer

structures, the p-type ZT values of monolayer GaS, GaSe, InS and InSe are enhanced

by factors of 14.3, 16.9, 8.7 and 7.7, respectively, compared to their bulk values. At

the peak p-type ZT, the contribution of κe to κtot is minimum for the bulk structure

and maximum for the monolayer structure. The contributions of κe to κtot in bulk

and monolayer GaS are 5% and 24%, respectively. The increasing contribution of κe

to κtot with decreasing film thickness reduces the enhancement of ZT relative to that
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t p Sp σp ZTp

(1019cm−3) (µV K−1) (106Ωm)−1

1L 3.2 251.6 1.41 2.01 (1.42)

2L 1.5 222.9 .776 1.02 (.641)

3L 1.1 213.2 .530 .630 (.412)

4L .92 211.2 .390 .421 (.290)

Bulk .33 187.6 .149 .140

Table 5.5: GaS thermoelectric properties for bulk and one to four monolayers at
T = 300 K. Hole carrier concentrations (p), Seebeck coefficients (Sp), and electrical
conductivties (σp) at the peak p-type ZT. The maximum and minimum ZT is listed
for two different approximations of κl, the minimum ZT is listed in parentheses. The
thermoelectric parameters are computed using an electron and hole mean free path,
λ=25 nm and a lattice thermal conductivity, κl, of 10 Wm−1K−1 for the maximum
ZT and 20 Wm−1K−1 for the minimum ZT.

of the power factor.

The increases in the Seebeck coefficients, the charge densities, and the electrical

conductivities with decreases in the film thicknesses follow the increases in the mag-

nitudes of I0 and I1 as discussed at the end of Sec. 5.2.2. For bulk p-type GaS,

the values of I0 (I1) at peak ZT are 0.94 (1.85), and for monolayer GaS, they are

8.87 (23.4). They increase by factors of 9.4 (12.6) as the film thickness decreases

from bulk to monolayer. In 4L GaS, the values of I0 (I1) are 2.45 (5.38), and they

increase by factors of 3.6 (5.4) as the thickness is reduced from 4L to 1L. For all four

of the III-VI compounds, the increases in I1 are larger than the increases in I0 as

the film thicknesses decrease. As described in Sec. 5.2.2, these increases are driven

by the transformation of the dispersion from parabolic to Mexican hat with an in-

creasing radius of the band edge k-space ring as the thickness is reduced from bulk

to monolayer.
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t n |—Se | σe ZTe

(1019 cm−3) (µV K−1) (106Ωm)−1

1L 1.02 237.0 .35 .431 (.620)

2L .621 219.6 .23 .218 (.362)

3L .595 200.9 .21 .147 (.273)

4L .545 191.9 .20 .111 (.231)

Bulk .374 210.8 .12 .095

Table 5.6: GaS thermoelectric properties for bulk and one to four monolayers at T =
300 K. Electron carrier concentrations (n), Seebeck coefficients (Se), and electrical
conductivties (σn) at the peak n-type ZT. The maximum and minimum ZT is listed
for two different approximations of κl, the minimum ZT is listed in parentheses. The
thermoelectric parameters are computed using an electron and hole mean free path,
λ=25 nm and a lattice thermal conductivity, κl, of 10 Wm−1K−1 for the maximum
ZT and 20 Wm−1K−1 for the minimum ZT.

t p Sp σp ZTp

(1018cm−3) (µV K−1) (Ωm)−1

1L 5.8 256.1 1.28 1.86 (1.07)

2L 2.7 225.3 .711 .870 (.471)

3L 2.1 221.2 .450 .561 (.293)

4L 1.4 210.2 .352 .391 (.211)

Bulk .54 180.9 .121 .112

Table 5.7: GaSe thermoelectric properties for bulk and one to four monolayers at
300K. Hole carrier concentrations (p), Seebeck coefficients (Sp), and electrical con-
ductivties (σp) at the peak p-type ZT. The maximum and minimum ZT is listed for
two different approximations of κl, the minimum ZT is listed in parentheses. The
minimum value of ZT uses twice the value of κl reported for bulk GaSe.
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Thickness n |—Se | σe ZTe

(1018 cm−3) (µV K−1) (106Ωm)−1

1L 2.71 202.9 .310 .321 (.172)

2L 1.20 201.4 .152 .162 (.081)

3L .79 194.0 .103 .110 (.054)

4L .69 186.4 .085 .082 (.041)

Bulk .29 127.9 .033 .132

Table 5.8: GaSe thermoelectric properties for bulk and one to four monolayers at
300K. Electron carrier concentrations (n), Seebeck coefficients (Se), and electrical
conductivties (σn) at the peak n-type ZT. The maximum and minimum ZT is listed
for two different approximations of κl, the minimum ZT is listed in parentheses. The
thermoelectric parameters are computed using an electron and hole mean free path,
λ=25 nm and a lattice thermal conductivity, κl, of 10 Wm−1K−1 for the maximum
ZT and 20 Wm−1K−1 for the minimum ZT.

While the focus of the paper is on the effect of the Mexican hat dispersion that

forms in the valence band of these materials, the n-type thermoelectric figure of merit

also increases as the film thickness is reduced to a few layers, and it is also maximum

at monolayer thickness. The room temperature, monolayer, n-type thermoelectric

figures of merit of GaS, GaSe, InS and InSe are enhanced by factors of 4.5, 2.4, 3.8

and 5.3, respectively, compared to the those of the respective bulk structures. The

largest n-type ZT occurs in monolayer GaS. In a GaS monolayer, the 3-fold degenerate

M valleys form the conduction band edge. This large valley degeneracy gives GaS

the largest n-type ZT among the 4 III-VI compounds. As the GaS film thickness

increases from a monolayer to a bilayer, the conduction band edge moves to the non-

degenerate Γ valley so that the number of low-energy states near the conduction band

edge decreases. With an added third and fourth layer, the M valleys move higher,

and the Γ valley continues to split so that the number of low-energy conduction states

does not increase with film thickness. Thus, for a Fermi energy fixed slightly below

the band edge, the electron density and the conductivity decrease as the number of
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t p Sp σp ZTp

(1018cm−3) (µV K−1) (106Ωm)−1

1L 9.3 244.2 1.26 2.43 (1.38)

2L 4.2 228.7 .610 1.12 (.612)

3L 2.3 229.5 .361 .701 (.383)

4L 1.9 222.0 .292 .532 (.281)

Bulk 1.3 195.1 .180 .280

Table 5.9: InS thermoelectric properties for bulk and one to four monolayers at
T = 300 K. Hole carrier concentrations (p ), Seebeck coefficients (Sp ), and electrical
conductivties (σp) at the peak p-type ZT. The maximum and minimum ZT is listed
for two different approximations of κl, the minimum ZT is listed in parentheses. The
minimum value of ZT uses twice the value of κl reported for bulk InS.

layers increase as shown in Tables 5.5 - 5.12. As a result, the maximum n-type ZT for

each material occurs at a single monolayer and decreases with each additional layer.

5.3.2 Bi2Se3

Bi2Se3 is an iso-structural compound of the well known thermoelectric, Bi2Te3. Both

materials have been intensely studied recently because they are also topological in-

sulators. [194,195] Bulk Bi2Se3 has been studied less for its thermoelectric properties

due to its slightly higher thermal conductivity compared to Bi2Te3. The bulk thermal

conductivity of Bi2Se3 is 2 W-(mK)−1 compared to a bulk thermal conductivity of

1.5 W-(mK)−1 reported for Bi2Te3. [68,188] However, the thermoelectric performance

of bulk Bi2Te3 is limited to a narrow temperature window around room temperature

because of its small bulk band gap of approximately 160 meV. [194] The band gap of

single quintuple layer (QL) Bi2Te3 was previously calculated to be 190 meV. [70] In

contrast, the bulk bandgap of Bi2Se3 is ∼300 meV [196] which allows it to be utilized
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t n |—Se | σe ZTe

(1018 cm−3) (µV K−1) (106Ωm)−1

1L 3.7 210.8 .210 .350 (.191)

2L 1.6 200.0 .113 .181 (.093)

3L 1.3 196.9 .078 .120 (.062)

4L 1.0 198.1 .059 .094 (.048)

Bulk 1.2 179.8 .070 .092

Table 5.10: InS thermoelectric properties for bulk and one to four monolayers at T =
300 K. Electron carrier concentrations (n), Seebeck coefficients (Se), and electrical
conductivties (σn) at the peak n-type ZT. The maximum and minimum ZT is listed
for two different approximations of κl, the minimum ZT is listed in parentheses. The
minimum value of ZT uses twice the value of κl reported for bulk InS.

t p Sp σp ZTp

(1018cm−3) (µV K−1) (106Ωm)−1

1L 9.7 229.8 .981 1.08 (.592)

2L 4.0 219.8 .430 .471 (.251)

3L 4.2 204.2 .471 .292 (.150)

4L 2.4 201.0 .261 .252 (.131)

Bulk 1.8 179.1 .181 .142

Table 5.11: InSe thermoelectric properties for bulk and one to four monolayers at
T = 300 K. Hole carrier concentrations (p ), Seebeck coefficients (Sp ), and electrical
conductivties (σp) at the peak p-type ZT. The maximum and minimum ZT is listed
for two different approximations of κl, the minimum ZT is listed in parentheses. The
minimum value of ZT uses twice the value of κl reported for bulk InSe.
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Thickness n |—Se | σe ZTe

(1018 cm−3) (µV K−1) (106Ωm)−1

1L 2.34 200.5 .192 .180 (.092)

2L 1.22 194.7 .111 .090 (.046)

3L .781 189.1 .067 .059 (.029)

4L .610 186.8 .053 .045 (.023)

Bulk .652 160.9 .054 .034

Table 5.12: InSe thermoelectric properties for bulk and one to four monolayers at T =
300 K. Electron carrier concentrations (n), Seebeck coefficients (Se), and electrical
conductivties (σn) at the peak n-type ZT. The maximum and minimum ZT is listed
for two different approximations of κl, the minimum ZT is listed in parentheses. The
thermoelectric parameters are computed using an electron and hole mean free path,
λ=25 nm and a lattice thermal conductivity, κl, of 12 Wm−1K−1 for the maximum
ZT and 24 Wm−1K−1 for the minimum ZT.

at higher temperatures.

Figure 5.6: (Color online) Ab-initio band structure including spin-orbit interaction
of Bi2Se3: (a) 1 QL, (b) 2 QL, (c) 3 QL and (d) 4 QL.

The optimized lattice parameters for bulk Bi2Se3 are listed in Table 5.1. The

optimized bulk crystal structure and bulk band gap is consistent with prior exper-

imental and theoretical studies of bulk Bi2Se3. [11, 146] Using the optimized lattice

parameters of the bulk structure, the electronic structures of one to four quintuple
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layers of Bi2Se3 are calculated with the inclusion of spin-orbit coupling. The elec-

tronic structures of 1 to 4 QLs of Bi2Se3 are shown in Figure 5.6. The band gaps for

one to four quintuple layers of Bi2Se3 are 510 meV, 388 meV, 323 meV and 274 meV

for the 1QL, 2QL, 3QL and 4QL films, respectively. The presence of a gapped surface

state in few-layer Bi2Se3 has been observed in prior experiments up to 4 QLs [197]

and is consistent with the presence of a gapped state in ab-initio calculations up to

6QLs. [146,198].

The effective masses of the conduction and valence band at Γ for 1QL to 4QL of

Bi2Se3 are listed in Table 5.13. For each of the thin film structures, the conduction

bands are parabolic and located at Γ. The conduction band at Γ of the 1QL structure

is composed of 13% Se s, 24% Se pxy, 16% Bi pxy, and 39% Bi pz. The orbital com-

position of the Γ valley remains qualitatively the same as the film thickness increases

to 4QL. The orbital composition of the bulk conduction band is 79% Se pz and 16%

Bi s. As the film thickness increases above 1QL, the conduction band at Γ splits, as

illustrated in Figs. 5.6(b)-(d). In the 2QL, 3QL and 4QL structures the conduction

band splitting varies between 53.9 meV and 88.2 meV. As with the III-VIs, the num-

ber of low-energy conduction band states per unit thickness decreases with increasing

thickness.

The valence bands have slightly anistropic Mexican hat dispersions. The values of

ε0 and k0 used to characterize the Mexican hat for the 1QL to 4QL structures of Bi2Se3

are listed in Table 5.4. The radius k0 is the distance from Γv to the band extremum

along Γv−Mv, which is the valence band maxima for the 1QL to 4QL structures. The

energy difference between the valence band maxima and the band extremum along

Γv − Kv decreases from 19.2 meV to 0.56 meV as the film thickness increases from

1QL to 4QL. The Mexican hat dispersion in 1QL of Bi2Se3 is better described as

a double brimmed hat consisting of two concentric rings in k-space characterized by
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four points of extrema that are nearly degenerate. The band extremum along Γv−Mv

adjacent to the valence band maxima, is 36 meV below the valence band maxima.

Along Γv −Kv the energy difference between the two band extrema is 4.2 meV. At

Γv, the orbital composition of the valence band for 1QL of Bi2Se3 is 63% pz orbitals

of Se, 11% pxy orbitals of Se and 18% s orbitals of Bi, and the orbital composition

remains qualitatively the same as the film thickness increases to 4QL. As the thickness

increases above a monolayer, the energy splitting of the valence bands from each layer

is large with respect to room temperature kBT and more complex than the splitting

seen in the III-VIs. At a bilayer, the highest valence band loses most of the outer

k-space ring, the radius k0 decreases by a factor 3.1 and the height (ε0) of the hat

decreases by a factor of 5.1. This decrease translates into a decrease in the initial step

height of the density of modes shown in Figure 5.7(a). The second highest valence

band retains most of the shape of the original monolayer valence band, but it is

now too far from the valence band edge to contribute to the low-energy electronic or

thermoelectric properties. Thus, Bi2Se3 follows the same trends as seen in Bi2Te3;

the large enhancement in the thermoelectric properties resulting from bandstructure

are only significant for a monolayer [45].

Structure Γv (m0) Γc (m0)

1L 0.128 0.132

2L 0.436 0.115

3L 1.435 0.176

4L 1.853 0.126

Table 5.13: Ab-initio calculations of the hole and electron effective masses at the
Γ-valley valence and conduction band edges of Bi2Se2.

The p-type and n-type Seebeck coefficient, electrical conductivity, power factor

and the thermoelectric figure-of-merit (ZT) as a function of carrier concentration

at room temperature for Bi2Se3 are illustrated in Figure 5.7. The thermoelectric
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t p Sp σp ZTp

(1018cm−3) (µV K−1) (106Ωm)−1

1L 7.7 279.3 .321 2.62 (1.76)

2L 4.6 251.3 .245 1.07 (.691)

3L 2.8 259.4 .152 .791 (.622)

4L 2.6 237.8 .141 .624 (.561)

Bulk 1.9 210.7 .085 .610

Table 5.14: Bi2Se3 thermoelectric properties for bulk and one to four quintuple layers
at T = 300 K. Hole carrier concentrations (p), Seebeck coefficients (Sp), and electrical
conductivties (σp) at the peak p-type ZT. The maximum and minimum ZT is listed
for two different approximations of κl, the minimum ZT is listed in parentheses. The
minimum value of ZT uses twice the value of κl reported for bulk Bi2Se3.

t n |—Se | σe ZTe

(1018 cm−3) (µV K−1) (106Ωm)−1

1L 4.6 210.1 .112 .463 (.249)

2L 3.4 208.2 .081 .280 (.182)

3L 2.9 198.3 .071 .218 (.120)

4L 2.6 185.8 .062 .176 (.081)

Bulk 1.2 191.9 .033 .129

Table 5.15: Bi2Se3 thermoelectric properties for bulk and one to four quintuple layers
at T = 300 K. Electron carrier concentrations (n), Seebeck coefficients (Se), and
electrical conductivties (σn) at the peak n-type ZT. The maximum and minimum
ZT is listed for two different approximations of κl, the minimum ZT is listed in
parentheses. The minimum value of ZT uses twice the value of κl reported for bulk
Bi2Se3.
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(b)

Figure 5.7: (Color online) (a) Distribution of modes per unit width versus energy for
Bi2Se3. The midgap energy is set to E=0. Thermoelectric properties of p-type (solid
line) and n-type (broken line) Bi2Se3: (b) Seebeck coefficient, (c) power factor and
(d) thermoelectric figure-of-merit, ZT, at room temperature for 1L (blue), 2L (red),
3L (green), 4L (purple) and bulk (black)

parameters at T = 300 K of bulk and one to four quintuple layers for Bi2Se3 are

summarized in Table 5.14 and. 5.15.

Assuming the same κl for the bulk and single quintuple layer structure, the p-type

ZT for the single quintuple layer is enhanced by a factor of 4.3 compared to that of

the bulk film. At the peak ZT, the hole concentration is 4 times larger than that

of the bulk, and the position of the Fermi energy with respect to the valence band

edge (EF − EV ) is 45 meV higher than that of the bulk. The bulk and monolayer

magnitudes of I0 (I1) are 0.77 (1.87) and 3.01 (9.72), respectively, giving increases of

3.9 (5.2) as the thickness is reduced from bulk to monolayer. As the film thickness is

reduced from 4 QL to 1 QL, the magnitudes of I0 and I1 at the peak ZT increase by

factors of 2.4 and 2.8, respectively.
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The peak room temperature n-type ZT also occurs for 1QL of Bi2Se3. In one to

four quintuple layers of Bi2Se3, two degenerate bands at Γ contribute to the conduc-

tion band density of modes. The higher Γ valleys contribute little to the conductivity

as the film thickness increases. The Fermi levels at the peak n-type, room-temperature

ZT rise from 34 meV to 12 meV below the conduction band edge as the film thickness

increases from 1 QL to 4 QL while the electron density decreases by a factor of 1.8.

This results in a maximum n-type ZT for the 1QL structure.

There have been several prior studies of the thermoelectric properties of single

and few quintuple layer Bi2Se3, and it is useful to make comparisons to understand

the differences and similarities. Saeed et al. [146] calculated a p-type ZT value of

0.27 and a p-type peak power factor of 0.432 mWm−1K−2 for 1QL of Bi2Se3 using ab

initio band structure, a hole relaxation time of 2.7 fs, and a thermal conductivity of

0.49 W/mK. The disparity between their values and ours result from the different

approximations made for the relaxation time (2.7 fs) and lattice thermal conductivity

(0.49 W/mK). To reproduce their results, we convert the relaxation time of 2.7 fs into

a mean free path of 0.27 nm, using an average thermal velocity of 105 m/s determined

from the 1QL valence bandstructure. This hole mean free path is approximately 2/3

of the in-plane lattice constant which pushes the limits of validity of the semiclassical

Boltzmann transport approach. Using the hole mean free path of 0.27 nm and the

lattice thermal conductivity of 0.49 W/mK, our calculation gives a peak p-type ZT

of 0.28 and peak p-type power factor of 0.302 mWm−1K−2, which agrees well with

the results in Ref. [146].
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5.3.3 Bilayer Graphene

AB stacked bilayer graphene (BLG) is a gapless semiconductor with parabolic con-

duction and valence bands that are located at the K (K ′) symmetry points. Prior

experimental [132,199] and theoretical [147] studies demonstrated the formation of a

bandgap in BLG with the application of a vertical electric field. The vertical electric

field also deforms the conduction and valence band edges at K into a Mexican-hat

dispersion [128, 132]. Using ab-initio calculations we compute the band structure of

bilayer graphene subject to vertical electric fields ranging from 0.1 V/nm to 1 V/nm.

The lattice parameters for the bilayer graphene structure used in our simulation are

given in Table 5.1. The ab-initio calculated band gaps are in good agreement with

prior calculations. [147, 200] The bandgap increases from 31.4 meV to 223.1 meV as

the applied field increases from 0.1 V/nm to 1 V/nm.

For each applied field ranging from 0.1 V/nm to 1 V/nm both the valence band and

the conduction band edges lie along the path Γ−K, and the radius k0 is the distance

from K to the band edge along Γ−K. The magnitude of k0 increases approximately

linearly with the electric field as shown in Figure 5.8(a). The dispersions of the valence

band and the conduction band quantitatively differ, and k0 of the valence band is up

to 10% larger than k0 of the conduction band. The anisotropy of the conduction and

valence Mexican hat dispersions increase with increasing vertical field. The extremum

point along K −M of the valence (conduction) band Mexican hat dispersion is lower

(higher) in energy compared to the band extremum along Γ−K. As the field increases

from 0.1 V/nm to 1.0 V/nm the energy difference between the two extrema points

increases from 1.2 meV to 21.6 meV in the valence band and 3.7 meV to 30.1 meV

in the conduction band. This anisotropy in the Mexican hat of the valence and

conduction band leads to a finite slope in the density of modes illustrated in Figure
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Field p Sp σp ZTp

(V/nm) (×1012 cm−2) (µV K−1) (×107Ωm)−1)

0.0 .06 73.4 .53 .0108

0.2 .07 148.6 .69 .0161

0.4 .08 152.6 .73 .0221

0.6 .12 159.4 .83 .0271

0.8 .14 179.1 .94 .0275

1.0 .16 192.1 1.1 .0281

Table 5.16: Bilayer graphene p-type thermoelectric properties as a function of vertical
electric field at T = 300 K. Hole carrier concentrations, p-type Seebeck coefficient,
and electrical conductivity at the peak p-type ZT.

5.8(b).

As the applied field is increased from 0.1 V/nm to 1.0 V/nm the height of the

density of modes step function in the valence and conduction band increases by a

factor of 2.6 as illustrated in Fig. 5.8(b). Even though the bandgap increases with

bias, at a fixed Fermi level, the charge density also increases with bias. For Fermi

energies within the bandgap, the energy per carrier, with respect to the Fermi energy,

also increases resulting in an increase in the Seebeck coefficient shown in Fig. 5.8(c).

The increase in the Seebeck coefficient and the charge density lead to the increase

in ZT shown in Fig. 5.8(d). For an applied electric field of 1 V/nm the p-type and

n-type ZT is enhanced by a factor of 2.8 and 2.6 in bilayer graphene compared to the

ZT of bilayer graphene with no applied electric field. The p-type thermoelectric pa-

rameters of bilayer graphene subject to vertical electric fields ranging from 0.0 V/nm

to 1.0 V/nm are summarized in Table 5.16. The p-type and n-type thermoelectric

parameters are similar.
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Figure 5.8: (Color online) (a) Evolution of the radius k0 of the Mexican hat in bilayer
graphene as a function of an applied vertical electric field. (b) Density of modes per
unit width for two different vertical fields of 0.1 V/nm (blue) and 1 V/nm (red).
(c) Seebeck coefficients (solid lines) and carrier concentrations (broken lines) for two
different vertical fields. (d) ZT of bilayer graphene as a function of the Fermi level
for two different vertical fields.

5.3.4 Bi Monolayer

The large spin-orbit interaction in bismuth leads to a Rasha-split dispersion of the

valence band in a single monolayer of bismuth. The lattice parameters for the Bi(111)

monolayer used for the SOC ab-initio calculations are summarized in Table 5.1. The

bandgap of the bismuth monolayer is 503 meV with the conduction band at Γc. The

inclusion of spin-orbit interaction splits the two degenerate bands at Γv by 79 meV

and deforms the valence band maxima into a Rashba split band. The calculated

band structure of the Bi(111) monolayer is shown in Figure 5.9(a,b). The Rashba

parameter for the bismuth monolayer is extracted from the ab-initio calculated band

structure. The curvature of the valence band maxima of the Rashba band gives an

effective mass of m∗ = 0.135. The effective mass of the conduction band at Γc is

m∗ = 0.008. The vertical splitting of the bands at small k gives an αR = 2.14 eVÅ.
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Figure 5.9: (Color online) Electronic structure and thermoelectric properties of
Bi(111) monolayer. (a) Valence band, (b) Conduction band of Bi(111) monolayer
with spin-orbit interaction. (c) Density of modes with SOC interactions included, (c)
Thermoelectric figure of merit, ZT, at room temperature.

Prior experimental and theoretical studies on the strength of the Rashba interaction

in Bi(111) surfaces demonstrate αR values ranging from 0.55 eVÅ−1 to 3.05 eVÅ−1

. [177] A slight asymmetry in the Rashba-split dispersion leads to the valence band

maxima lying along Γv −Mv. The band extremum along Γv −Kv is 0.5 meV below

the valence band maxima. The radius of the valence band-edge k0, which is the

distance from Γv to the band extremum along Γv −Mv is 1.40 nm−1 similar to 4L

InSe. The valence band-edge density of modes shown in Fig. 5.9(c) is a step function

with a peak height of 0.96 nm−1. Figure 5.9(d) shows the resulting thermoelectric

figure of merit ZT as a function of Fermi level position at room temperature. The

thermoelectric parameters at T = 300 K are summarized in Table 5.17.

There is one prior study of the thermoelectric performance of monolayer Bi. [187]

In this study Cheng et. al calculate a p-type (n-type) ZT of 2.4 (2.1), a peak p-

type (n-type) Seebeck coefficient of 800 µV/K (-780 µV/K) using a lattice thermal

conductivity of 3.9 Wm−1K−1 and a relaxation time of 0.148 ps. We convert the
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p-type n-type

n/p (×1019cm−3) .61 .35

Seebeck (µV K−1) 239.7 234.1

σ (×106Ωm)−1) .19 .089

ZT .73 .41

Table 5.17: Bi(111) thermoelectric properties at T = 300 K. Hole and electron carrier
concentrations (p and n), Seebeck coefficients (Sp and Se), and electrical conductivties
(σp and σn) at the peak p-type and n-type ZT.

relaxation time of 0.148 ps into an electron mean free path of 59.2 nm and a hole

mean free path of 14.8nm using average electron and hole thermal velocities of 4×105

m/s and 1×105, respectively, determined from the Bi(111) monolayer bandstructure.

With these values for λ and a lattice thermal conductivity of 3.9 Wm−1K−1, our

calculation gives a peak p-type (n-type) ZT and Seebeck values of 1.9 (1.8) and 786

µV/K (-710 µV/K) respectively, which agrees well with the results in Ref. [187]

5.4 Summary and Conclusions

Monolayer and few-layer structures of III-VI materials (GaS, GaSe, InS, InSe), Bi2Se3,

monolayer Bi, and biased bilayer graphene all have a valence band that forms a ring

in k-space. For monolayer Bi, the ring results from Rashba splitting of the spins.

All of the other few-layer materials have valence bands in the shape of a ‘Mexican

hat.’ For both cases, a band-edge that forms a ring in k-space is highly degenerate.

It coincides with a singularity in the density of states and a near step-function turn-

on of the density of modes at the band edge. The height of the step function is

approximately proportional to the radius of the k-space ring.

As the radius of the k-space ring increases, the Fermi level at the maximum power

factor or ZT moves higher into the bandgap away from the valence band edge. Nev-
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ertheless, the hole concentration increases. The average energy carried by a hole with

respect to the Fermi energy increases. As a result, the Seebeck coefficient increases.

The dispersion with the largest radius coincides with the maximum power factor pro-

vided that the mean free paths are not too different. For the materials and parameters

considered here, the dispersion with the largest radius also results in the largest ZT

at room temperature.

The Mexican hat dispersion in the valence band of the III-VI materials exists for

few-layer geometries, and it is most prominent for monolayers, which have the largest

radius k0 and the largest height ε0. The existence of the Mexican hat dispersions and

their qualitative features do not depend on the choice of functional, stacking, or the

inclusion or omission of spin-orbit coupling, and recent calculations by others show

that they are also unaffected by many-electron self-energy effects. [139] At a thickness

of 8 layers, all of the III-VI valence band dispersions are parabolic.

The Mexican hat dispersion in the valence band of monolayer Bi2Se3 is qualita-

tively different from those in the monolayer III-VIs. It can be better described as a

double-brimmed hat characterized by 4 points of extrema that lie within ∼ kBT of

each other at room temperature. Futhermore, when two layers are brought together

to form a bilayer, the energy splitting of the two valence bands in each layer causes

the highest band to lose most of its outer ring causing a large decrease in the density

of modes and reduction in the thermoelectric properties. These trends also apply to

Bi2Te3. [45]

With the exception of monolayer GaS, the conduction bands of few-layer n-type

III-VI and Bi2Se3 compounds are at Γ with a significant pz orbital component. In

bilayers and multilayers, these bands couple and split pushing the added bands to

higher energy above the thermal transport window. Thus, the number of low-energy

states per layer is maximum for a monolayer. In monolayer GaS, the conduction band

95



is at M with 3-fold valley degeneracy. At thicknesses greater than a monolayer, the

GaS conduction band is at Γ, the valley degeneracy is one, and the same splitting of

the bands occurs as described above. Thus, the number of low-energy states per layer

is also maximum for monolayer GaS. This results in maximum values for the n-type

Seebeck coefficients, power factors, and ZTs at monolayer thicknesses for all of these

materials.

For the chalcogenide materials where an inverted Mexican hat occurs in the valence

band, the p-type ZT is enhanced by up to a factor of ∼17 over the ZT of the bulk

giving a maximum value of ZT = 2.9 in Bi2Se3 and ZT = 2.4 in InS. Similar n-

type values were found for few-layer transition metal dichalcogenides such as bilayer

MoSe2 [1]. A combination of these materials would provide an on-chip thermocouple

for local thermal management or power scavanging. Bilayer graphene may serve as a

test-bed to measure the predicted thermoelectric effects, since a cross-plane electric

field linearly increases the diameter of the Mexican hat ring, and the features of the

Mexican hat in bilayer graphene have recently been experimentally observed. [132]
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Chapter 6

Charge density waves in transition

metal dichalcogenides

6.1 Introduction and Motivation

A number of Group IV and Group V transition metal dichalcogenides exhibit a phase

transition to a charge density wave (CDW) ground state. [15, 46] Below a transition

temperature that is unique to each material a phase transition from a normal metallic

state to a charge density wave state occurs. In reality, the the phase diagrams of the

CDW transition that occurs in the TMD materials as a function of temperature is

complex, with a number of intermediate phase transitions that can occur to either

an incomensurate CDW (ICDW) or nearly-commensurate CDW (NCCDW) state.

Summarized in Table 6.1 below are the transition temperatures and structural prop-

erties for a select number of transition metal dichalcogenides that undergo a CDW

transition.

Although the charge density wave phenomena in bulk transition metal dichalco-

genides have been studied extensively the ability to isolate single monolayers and
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1T-TaS2 1T-TaSe2 2H-TaSe2 1T-TiSe2

Transition Temperature

TICDW (K) 550 600 122 -

TNCCDW (K) 350 - - -

TCCDW (K) 180 473 90 200

Lattice distortion
√

13×
√

13
√

13×
√

13 3× 3× 3 2× 2× 2

Lattice constants

a (Å) 3.365 3.48 3.450 3.536

c (Å) 5.883 6.27 13.057 6.004

Table 6.1: Experimental charge density wave properties of Group IV and Group V
transition metal dichalcogenides obtained from Refs. [13–15]

few-monolayer films of the materials listed in Table 6.1 has motivated the study of

charge density wave properties in their monolayer and few-layer structures. The ob-

jectives of this study are to:

1. Understand how the electronic structure of 1T-TiSe2 and 1T-TaS2 changes as

they are confined to a single monolayer

2. Calculate the zone center phonons of 1T-TaSe2 in its bulk, monolayer and few-

layer structures in the normal and commensurate CDW phase. Relate these

changes in the vibrational properties as a function of film thickness to experi-

mental data.

The results of this study for each material is detailed in separate subsections below.

The materials we study in this chapter include 1T-TaS2, 1T-TaSe2 and 1T-TiSe2. in

their bulk, few-layer and monolayer structures.
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6.2 1T-TaSe2

TaSe2 can exist in many different polymorphs and polytypes; the 1T, 2H and 3R. In

1T-TaSe2 as the temperature is lowered below TIC=600 K, bulk 1T-TaSe2 transforms

into the ICDW phase. Decreasing the temperature below TC=473 K results in the

first order phase transition to the C-CDW phase. During the ICDW to CCDW phase

transition, the CDW supercell undergoes a
√

13 ×
√

13 reconstruction in which the

basal-plane lattice vectors increase by
√

13 and rotate by 13.9o with respect to the

original lattice vectors. Since there are strong modifications of the lattice as a function

of temperature this results in strong modifications of the Raman spectra of 1T-TaSe2.

Illustrated in Figure 6.1 is the Raman spectra measured for 150 nm and 35 nm thick

films of 1T-TaSe2 over a range of temperatures. To understand the modification of

the Raman spectra as a function of temperature ab-initio calculations of the bulk and

monolayer structures of 1T-TaSe2 in the normal and CCDW phase are done.

6.2.1 Computational Methods

The electronic properties of these materials are studied using density functional the-

ory and the vibrational properties are studied using density functional perturba-

tion theory. The calculations included DFT using the projector augmented wave

method as implemented in the software package VASP and DFPT as implemented

in the Quantum-ESPRESSO package. For the electronic structure calculations, a

Monkhorst-Pack scheme was adopted to integrate over the BZ with a k-mesh 12 ×

12 × 1 (12 × 12 × 6) for the monolayer (bulk) structures. A plane-wave basis kinetic

energy cutoff of 500 eV was used. The van der Waals interactions in TaSe2 were

accounted for using a semi-empirical correction to the Kohn-Sham energies when op-

timizing the bulk structures. The optimized lattice parameters for bulk 2H- and 1T-
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(a) (b)

(c) (d)

Figure 6.1: Normal (red) and commensurate reconstructed (green) Brillouin zone
of bulk and monolayer TaSe2. The equivalent Γ points in the first extended C-
BZ and second extended C-BZ are connected to Γ by red and blue vectors, re-
spectively. Figure reproduced with permission from [2]. Experiments conducted by
R.Samnakay/A.Balandin (UC Riverside).

TaSe2 are a=3.45Å, c=13.06Å and a=3.42Å, c=6.22Å, respectively. These structural

parameters are consistent with prior experimental reports of the lattice parameters

for the 2H and 1T structures. The lattice constants for the monolayer 2H- and 1T-

TaSe2 structures were obtained from the respective optimized bulk structures. The

atomic coordinates within the monolayer TaSe2 structures were optimized by intro-

ducing a 20-Å vacuum layer between the adjacent structures. Spin-orbit coupling was

included self-consistently in each calculation. For the phonon dispersion calculations

using Quantum-ESPRESSO, an energy cutoff of 500 eV was used in the plane wave

basis for the bulk and monolayer structures,. The structures were optimized until the

forces on the atoms were less than 0.005 eV/Å. A 12×12×6 (12×12×1) k-point grid
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and a Gaussian smearing of 0.05 eV was used to integrate over the electronic states

in the Brillouin zone for the bulk (monolayer) structures. The dynamical matrices

for the bulk (monolayer) structure were calculated using a 4×4×2 (4×4×1) q-point

grid.

6.2.2 Results and Discussion

To rationalize the experimental data in Figure 6.1, we calculated the total energy

of bulk and monolayer 2H- and 1T-TaSe2 in their normal (existing for T¿TIC) and

C-CDW (existing for T¡TC) phases. We first compare the relative stability of the

2H and 1T polytypes of bulk TaSe2. The 2H polytype is the ground state stacking

order and is lower in energy by 0.121 eV/Ta-atom compared to the 1T polytype.

This energy difference is a factor of 7 lower than the energy barrier between the 2H

and 1T polytypes of MoS2 [201]. This small difference explains why the material

grown by CVT contains 2H-TaSe2 even when the synthesis process is optimized for

1T growth (i.e., rapid quenching). The differences in the ground state energies of

the C-CDW phases and the normal phases of bulk and monolayer 1T and 2H TaSe2

also were calculated. Figure 6.2 illustrates the CCDW structure for each polytype.

2H-TaSe2 undergoes a commensurate (3×3×3) periodic lattice distortion while 1T-

(a) (b)

Figure 6.2: Commensurate CDW structures of TaSe2. (a)
√

13 ×
√

13 structure of
1T-TaSe2 and (b) 3×3 structure of 2H-TaSe2.
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∆E (meV/Ta-atom) Bulk 1L

1T-TaSe2 -21.9 -19.4

2H-TaSe2 -3.50 -2.04

Table 6.2: Calculated Energy Reduction in 1T and 2H TaSe2 C-CDW

TaSe2 undergoes a commensurate (
√

(13) ×
√

(13)) periodic lattice distortion. For

each calculation of the bulk and monolayer C-CDW reconstructed lattices, the lat-

tice constants were fixed and the atomic coordinates were allowed to relax after the

tantalum atoms had been displaced from their equilibrium positions. The results of

these total energy calculations are summarized in Table 6.2, where ∆E=EN -EC−CDW

is the difference between the ground state energies of the normal structure and the

C-CDW structure.

For each polytype and dimension, the commensurate CDW structure is predicted

by DFT to be the ground state structure. The energy reduction of the bulk CDW

supercell is greater than the energy reduction of the monolayer CDW supercell for

both the 1T and 2H polytypes. These results are consistent with prior reports of total

energy calculations on the bulk C-CDW supercells in 2H- and 1T-TaSe2. [202,203] A

transition to a commensurate CDW lowers the electronic energy. A smaller energy

reduction —∆E— indicates a lower transition temperature. In order to explain the

single peak that occurs at 152 - 154 cm−1, the single q-point phonon frequencies

of bulk and monolayer TaSe2 were calculated using density functional perturbation

theory (DFPT). The reconstruction of the lattice along the basal plane in the C-CDW

state of TaSe2results in a reduced Brillouin zone of the C-CDW structure (C-BZ).

The C-BZ forms a subset of the normal Brillouin zone (N-BZ) of TaSe2 in its normal

undistorted state. Twelve points in the N-BZ get mapped back to Γ in the C-BZ.

Figure 6.3 shows the structure of the N-BZ and the C-BZ and the 12 q-points in the

N-BZ that are zone-folded to the Γ point of the C-BZ. These zone-folded modes can
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Figure 6.3: Normal (red) and commensurate reconstructed (green) Brillouin zone of
bulk and monolayer TaSe2. The equivalent Γ points in the first extended C-BZ and
second extended C-BZ are connected to Γ by red and blue vectors, respectively

result in new peaks in the Raman spectrum. The 12 q-points in the N-BZ that map

back to Γ in the C-BZ are ±g1, ±g2, ±(g1 - g2), ±(g1 + g2), ±(g2 - 2g1) and ±(2g2 -

g1) where g1 and g1 are the reciprocal lattice constants of the C-BZ. The reciprocal

lattice constants are g1 = G
13

(2
√

3,-1) and g2 = G
13

(−
√
3

2
,7
2
)respectively, where G is the

magnitude of the reciprocal lattice vector of the N-BZ. The normal-phase phonon

frequencies at Γ, q = g1 and q = g1+g2 in the N-BZ are calculated and summarized

in Table 6.3 for bulk and monolayer 1T-TaSe2.

The 5 other q-points shown in Figure 6.3 with magnitude —g1— have the same

frequencies as those at g1, and the 5 other q-points with magnitude —g1+g2— have

the same frequencies as those at g1+g2. Only frequencies between 100 cm−1 and 270

cm−1 are shown. As shown in Table 6.3, the modes originating from the q-points

in Figure 6.3 have energies of ∼152 - 154 cm−1 (highlighted in bold font). This

indicates that all of these phonon modes may contribute to the Raman peak observed
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q-point Monolayer normal phase (cm−1) Bulk normal phase (cm−1)

Γ 143 (IR), 143 (IR), 173 (R),
173(R), 188 (R), 210 (IR)

146 (IR), 146 (IR), 175 (R), 175
(R), 191(R), 219 (IR)

g1 109, 118, 144, 154, 180, 249 122, 149, 152, 197, 215, 261

g1+g2 108, 117, 143, 154, 165, 181, 249 121, 148, 153, 172, 196, 214, 260

Table 6.3: Calculated phonon energies of normal-phase bulk and monolayer 1T-TaSe2
at Γ and at the q points in the N-BZ that are folded back to Γ in the C-BZ. The IR
active (IR) and Raman active (R) modes at Γ are indicated.

experimentally at 152 - 154 cm−1. The fact that the 12 q-points in the N-BZ that are

equivalent to Γ in the C-BZ have frequencies 152 - 154 cm−1 corresponding to the new

Raman peak is consistent with the view that the new peak is the result of zone-folding

associated with the re-constructed lattice. We also observe that the the Raman active

modes of the normal bulk phase are close to the experimentally observed modes at

177 cm−1 and 187 - 189 cm−1 shown in Figs. 6.1. So far, we have considered phonon

modes of the normal lattice consisting of 3 atoms per unit cell at momenta that are at

equivalent Γ points of the reconstructed C-CDW lattice, and we find that one of their

energies corresponds to a new peak in the Raman spectrum of the C-CDW phase.

To further investigate the new Raman peaks of the C-CDW phase, we calculate the

phonon energies of the C-CDW reconstructed lattice with 39 atoms in the unit cell

for bulk and monolayer 1T-TaSe2. Table 6.4 shows the calculated phonon frequencies

between 100 cm−1 and 270 cm−1 which is a subset of the 117 phonon modes that

occur in the bulk and monolayer C-CDW structures.

The modes are grouped according to the phonon energies of the normal phase

listed in Table 6.3. The Γ-point phonon energies of the C-CDW phase are centered

around the normal-phase phonon energies listed in Table 6.3 for both the bulk and

monolayer structures. The number of phonon modes that occur within each frequency

range is listed in parentheses. The splitting of the phonon energies is not unexpected
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C-CDW Γ-point phonons (cm-1)

Monolayer Bulk

101 - 122 (15) 120 - 123 (9)

144 (9) 151 - 158 (15)

150 - 158 (12) 163 - 169

160 - 179 (13) 172 - 179 (8)

181 - 189 (11) 180 - 188 (9)

243 - 257 (18) 190 - 197 (7)

201-217 (11)

251 - 266 (10)

Table 6.4: Calculated Γ point phonons of the reconstructed C-CDW structure in
monolayer and bulk 1T-TaSe2 grouped by the normal-phase phonon energies in Table
6.3

since the 12 modes of the normal lattice are coupled by the C-CDW wavevectors Q

which form the reciprocal lattice vectors of the commensurate Brillouin zone (C-BZ)

shown in Fig. 6.3 Thus, the CDW potential VQ couples and splits the phonon modes

of the normal lattice. The calculated bulk Γ-valley phonons listed in Table 6.4 are

within 1 cm−1 to 6 cm−1 of the zone folded normal-phase 152 cm−1 frequency given in

Table 6.3 and the experimentally observed 154 cm−1 frequency shown in the Raman

spectra in Figs. 6.1. In the bulk and monolayer C-CDW structures, the eigenvectors

of the phonon frequencies in the range of 150 cm-1 to 158 cm-1 are a mixture of

transverse and longitudinal displacements of the 26 Se atoms and 13 Ta atoms. As

a result, they cannot be easily categorized as A1g or E2g modes, and their symmetry

is not obvious. Assuming that these modes originate from a zone-folding of the low-

symmetry points g1 and g1+g2 in the N-BZ, this low symmetry would be expected.

The eigenvectors of the normal-phase phonons at g1 and g1+g2 are also a mix of

transverse and longitudinal displacements, so it is not surprising that the new Raman

mode that appears at Γ in the C-CDW phase is a mix of transverse and longitudinal
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displacements. Since there is a possibility of 3R-TaSe2 residue in CVT synthesized

samples we theoretically analyzed the phonon spectrum of this polytype to exclude

the possibility of the new Raman peaks arising from the 3R-TaSe2 phonon modes.

We calculated the Γ-point phonons and Raman active modes of bulk 3R-TaSe2 using

density functional perturbation theory. The 3R-TaSe2 polytype has a space group R-

3m. The unit cell consists of three monolayers of TaSe2 that have a trigonal prismatic

coordination of the Ta atom. The Raman modes of the 3R structure remain the out-

of-plane A1g mode and the in-plane E2g mode. The calculations indicate that the A1g

and E2g frequencies of bulk 3R-TaSe2 are ∼230 cm−1 and ∼191 cm−1, respectively.

These frequencies are not in the range of the new Raman peak of interest and hence

do not affect the interpretation of the zone-folded peak.

6.2.3 Conclusion

In summary, a comparison of the Raman data with ab initio calculations of the vibra-

tional modes of both the normal and C-CDW phases gave a consistent picture of the

zone-folding of the phonon modes following lattice reconstruction. The q-points of the

normal lattice that lie at equivalent Γ points of the C-CDW reconstructed lattice all

have a phonon mode at, or within 2 cm−1, of the frequency of the new Raman peak.

The calculated Γ-point phonon frequencies of the bulk reconstructed C-CDW lattice

show a splitting of the modes into a cluster of frequencies between 151 and 158 cm−1.

These modes are a mixture of transverse and longitudinal displacements of the 26 Se

atoms and 13 Ta atoms, and, as a result, they cannot be easily categorized as Raman

active modes, and their symmetry is not obvious. The total energy calculations of

the normal and C-CDW phases of bulk and monolayer 1T and 2H polytypes show

that the energy difference between the normal and the C-CDW phase of the bulk is
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greater than that of the monolayer, and this is consistent with a reduced transition

temperature for a monolayer compared to that of the bulk. The experimental thick-

nesses did not come close to a monolayer, so we simply note that the trend of lower

C-CDW temperature for lower thickness is consistent with the experimental trend.

6.3 1T-TiSe2

1T-TiSe2 is a transition metal dichalcogenide that also exhibits a charge density wave

transition. The material undergoes a phase transition from its normal phase to a com-

mensurate charge density wave phase below 200K. The electronic structure of bulk

TiSe2 has been intensely studied experimentally and theoretically. It is predicted

to be either a semimetal [204, 205] or an indirect gap semiconductor [47, 206–208].

This has led to a range of interpretations of the CDW ground state and the peri-

odic lattice distortion (PLD) observed below 200K in bulk TiSe2. Explanations that

range from a Jahn-Teller effect, [47, 209, 210] correlated mechanisms that lead to an

excitonic insulator state [206, 211, 212] to the presence of chiral order in TiSe2 at

low temperatures [213, 214] have been suggested. A number of recent experimental

results have shown that the CDW transition in 1T-TiSe2 is driven by an excitonic

insulator transition. [215] In the normal phase bulk TiSe2 is a semi-metal with a hole

pocket and electron pocket at the Γv and Lc valleys respectively. Photoemission ex-

periments have shown these bands overlap by ∼200 meV above the CDW transition

temperature. Ab-initio studies at the LDA and GGA level of theory have shown this

overlap between the bands can vary between 180 meV and 250 meV in bulk TiSe2.

Neither local or semi-local approximations to density functional theory have been

able to predict the presence of this excitonic insulator state in bulk TiSe2. In this

study we show that the excitonic gap in bulk TiSe2 can be described using either the
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hybrid range separated Heyd-Scuseria-Ernzerhof (HSE) functional or calculation of

the quasi particle energies using the GW approximation. Applying these calculations

to the bulk and monolayer structures results in a bandgap that is a factor of ∼2 larger

than the bulk structure.

6.3.1 Computational Methods

We use ab-initio calculations of the bulk, monolayer, and bilayer TiSe2 electronic

structures. Fig. 6.4 illustrates a top-view of the atomic structure of a monolayer

TiSe2 supercell.

Ti Se

Figure 6.4: Top view of the atomic structure of 1T-TiSe2 in the 2× 2 supercell).

Density functional theory (DFT) as implemented in the Vienna Ab-initio Simula-

tion Package (V ASP ) [216] are used to investigate the CDW instability in bulk and

few-layer TiSe2. The Perdew-Burke-Ernzerhof (PBE) Generalized Gradient Approx-

imation (GGA) of DFT is used as an initial approximation in the calculations. Spin

orbit coupling is self consistently included in the calculations and the results are com-

pared to the results with no spin orbit interaction. The bulk structure of 1T-TiSe2 is
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optimized using the Grimme-D2 correction to the Kohn-Sham energies to account for

van-der-Waal interactions. All atomic positions were fully optimized until the forces

acting on each atom is less than 0.01 eV/Å. A Monkhorst-Pack scheme is adopted to

integrate over the Brillouin zone with a k-point mesh of 8 × 8 × 4 for the bulk and

8× 8× 1 for the thin films. The energy cut off of the plane wave basis is 500 eV. For

the HSE calculations of the bulk and monolayer structures, 25% to 35% short-range

exact Hartree-Fock (HF) exchange was used with the PBE correlation. The G0W0

calculations of the bulk structure are converged using a k-point grid of 12×12×6 and

240 empty conduction bands. The G0W0 calculations of the monolayer structure use

a k-point grid of 12×12×1, 320 empty conduction bands and a 20Å vacuum.

The vdW optimized lattice parameters for the bulk are 3.661 Å and 5.965 Å which

is in agreement with previous experimental studies [217]. The optimized thickness of

the monolayer thin film is 3.405 Å and the bilayer thin film is 10.912 Å.

6.3.2 Results and Discussion

The PBE and GW band structures with no SOC for the normal bulk and monolayer

1T-TiSe2 structures are plotted in Fig. 6.5. Our calculations show bulk TiSe2 is a

Figure 6.5: LDA (blue) and GW (red) bandstructure of (a) bulk and (b) monolayer
TiSe2).

semi-metal with a negative overlap of 280 meV of the hole and electron bands at the

Γ and the L symmetry points respectively. When the bulk structure is confined to a
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single monolayer or bilayer thin-film, our calculations continue to show an electronic

structure that remains semi-metallic. In the monolayer and bilayer structures, the

overlap of the hole and electron pockets is now at the Γ and M valleys respectively.

Spin-orbit interaction does not change the properties of the PBE band structures.

The PBE-SOC calculations of the bulk and monolayer structure of TiSe2 still results

in a semi-metallic band structure. The overlap of the electron and hole bands of the

bulk (monolayer) structure with SOC included is 300 meV. Hence, the default level

of theory in all the calculations discussed is LDA with no spin-orbit coupling.

The GW correction to the PBE energies results in a semi-metal to insulator tran-

sition. The bulk GW bandgap is 140 meV and the monolayer GW bandgap is 260

meV. We compare our results to the HSE calculation for a range of different exact

exchange percentages. Increasing the amount of exact exchange in the HSE calcula-

tion of bulk TiSe2 from 10% to to 35% increases the Γv to Lc bandgap from 108 meV

to 423 meV.

6.3.3 Conclusion

In conclusion the electronic structure of bulk and monolayer 1T-TiSe2 is studied using

the LDA, GW and HSE approximations of density functional theory. The LDA and

GGA calculations of bulk TiSe2 predict the material to be a semi-metal which is

in disgareement with experimental results that demonstrate an excitonic insulating

phase that follows the transition to a commensurate charge density wave phase. LDA

and GGA and calculations of the monolayer structure predict semi-metallic behavior

as well. GW calculations at the G0W0 level of theory and hybrid HSE calculations

demonstrate the presence of a gapped state at the Γv and Lc valleys of the bulk

structure and Γv and Mc valleys of the monolayer structure. Initial calculations of
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the gap in the monolayer structure suggests that the value of the excitonic gap is

larger in comparison to the bulk structure. However, further convergence of the GW

and HSE calculations is necessary to obtain an accurate value of the excitonic gap in

the monolayer TiSe2 structure.
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Chapter 7

Conclusion

There is growing interest in the controlled synthesis and characterization of different

van-der-Waal materials beyond graphene. The electronic and vibrational properties of

these materials qualitatively changed as they are confined from their bulk structures

to the single monolayer limit. Growth and mechanical exfoliation of these layered

materials also leads to interfaces that are misoriented with respect to each other,

which in turn can affect the electronic and vibrational properties. Proximity between

monolayers of layered materials can qualitatively alter the monolayer electronic and

vibrational properties of interest. This can result in changes in the electrical con-

ductivity, Seebeck coefficient, thermal conductivity and correlated phenomena (eg.

charge density waves) in this class of materials.

In this work the bulk to monolayer electronic properties for a wide range two

dimensional layered materials have been studied using ab-initio density functional

theory. In Chapter 1 the different materials and phenomena studied is introduced.

An overview of the ab-initio calculation methods used to study these materials and

phenomena is summarized in Chapter 2. Chapters 3 and 4 investigate the electronic

and thermoelectric properties of the semiconducting transition metal dichalcogenides
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as a function of film thickness and misorientation. In these chapters changes in

the band gaps, band offsets, effective masses are calculated for a range of Group

VI TMDC materials using different levels of ab-initio DFT theory. The calculated

band structures are used as an input to our Landauer model to calculate the ther-

moelectric properties of these materials in linear response. Chapter 5 investigates

the electronic and thermoelectric properties of semiconducting layered materials that

exhibit a Fermi ring in their electronic structure. In Chapter 6 the electronic and

vibrational properties of the metallic and semi-metallic TMDCs are investigated and

the results are compared to available experimental data.

The critical findings of this dissertation are summarized below:

1. The Group VI semiconducting TMDCs exhibit large n-type (p-type) band de-

generacy as the Kc and Λc (Kv and Γv) conduction (valence) band valleys move

within kBT of each other for film thicknesses greater than two monolayers. The

interlayer hybridization and energy level splitting determine how the number of

conducting modes within kBT of a valley minimum changes with layer thick-

ness. The maximum number of conducting modes is directly proportional to

the electrical conductance; the thickness at which this occurs is in general not

a monolayer.

2. Misorientation between bilayers of MoS2, MoSe2, WS2 and WSe2 can increase

the van-der-Waal gap distance between the individual monolayers, decrease in-

terlayer coupling and increase the magnitude of the bandgap by up to 100 meV.

3. The valence band of the Group-III chalcogenides transforms from a parabolic

to an inverted Mexican hat dispersion when confined from the bulk structure

to a single monolayer. This dispersion gives rise to an anisotropic Fermi ring

at the band edge which results in a singularity in the density of states, a step
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function turn on in the density of modes and leads to an enhancement of the

thermoelectric response of a material by up to an order of magnitude.

4. The transition to a commensurate charge density wave (CDW) phase in 1T-

TaSe2 results in a Brillouin zone that is rotated with respect to the normal

Brillouin zone and is reduced by
√

13.

5. One of the zone folded phonon modes at Γ in the commensurate CDW phase of

1T-TaSe2 occurs at 152-154 cm−1 in the bulk and monolayer structures, which

is consistent with the experimental observation of a Raman peak at 154 cm−1

below the commensurate CDW transition temperature.

6. The excitonic insulator phase that occurs in 1T-TiSe2 is described using ab-

initio GW calculations of the bulk and monolayer structures. The GW bandgap

of the bulk and monolayer structures is 140 meV and 260 meV respectively.
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Appendix A

HSE calculations of layered metal

dichalcogenides and

monochalcogenides

The electronic properties of the layered materials investigated in this study are sensi-

tive to the choice of exchange correlation approximation used. For a majority of the

electronic and thermoelectric properties of the materials investigated in this study,

a standard local or semi-local approximation to DFT provides the salient properties

of each material. The Perdew-Wang-Ernzherhof (PBE) functional correctly describes

each of the semiconducting layered dichalcogenides to have a bandgap and the band

minima are predicted to be at the correct valleys in k-space (provided van-der-Waal

interactions are accounted for during geometry optimization). However, the bandgaps

predicted by the PBE functional are often underestimated compared to experimental

results, which in turn affects the band-offsets between higher energy valleys. To cor-

rect for this we employ the hybrid HSE functional. The amount of exact exchange

or the screening parameter is empirically tuned to match experimental reports of
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Material Effective Masses Band Splitting

Direction Kv (m0) Kc (m0) ∆Kv (meV) ∆Kc (meV)

MoS2
Longitudinal 0.485 0.407

188.6 9.9
Transverse 0.480 0.404

MoSe2
Longitudinal 0.503 0.435

254.8 36.9
Transverse 0.503 0.436

MoTe2
Longitudinal 0.576 0.501

317.4 43.7
Transverse 0.565 0.500

WS2
Longitudinal 0.304 0.331

528.7 12.0
Transverse 0.305 0.332

WSe2
Longitudinal 0.303 0.358

606.4 7.80
Transverse 0.303 0.359

Table A.1: Longitudinal and transverse electron and hole effective masses, band split-
ting at K for conduction and valence band calculated using the HSE function with
spin orbit coupling

bandgaps. The HSE functional leads to corrections of the under-estimated PBE

bandgaps, lower effective masses compared to the PBE functional, corrections to the

band offsets between valleys and corrections to the splitting of the conduction and

valence bands due to spin orbit coupling. The longitudinal and transverse effective

masses of monolayers of the Group VI TMDs and the conduction and valence band

splitting at K calculated with HSE is summarized in the Table below. The hybrid

HSE functional also changes the energy offset between the band extrema and high

energy valleys, specifically the energy difference between the conduction band valley,

Kc, and the Sigma valley, Σc for the electrons and the valence band Kv valley and

the Γv valley for the holes. The energy difference between these valleys for the elec-

trons and holes for monolayers of the Group VI TMDs is illustrated below in Figure

A.1. Applying corrections to standard LDA or GGA calculations of the monolayer

and few-layer TMDs is not only essential to correct the underestimated bandgaps,
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(a) MoS2

(b) MoSe2

(c) WS2

(d) MoSe2

CB

CB

CB

CB

VB

VB

VB

VB

Figure A.1: Offsets between conduction band valley, Kc and Σc valley and valence
band valley, Kv and the Γv valley for monolayer (a) MoS2, (b) MoSe2, (c) WS2 and
(d) WSe2. Calculations are done using the hybrid HSE functional with spin orbit
interaction

it also corrects the band offsets between higher energy valleys as a function of film

thickness. Obtaining quantitatively accurate values of the bandoffsets is essential to

correctly account the valley degeneracy introduced by the K, Σc and Γv valleys. The

Kv and Kc have a degeneracy of 2, the Σc has a degeneracy of 6 and the Γv has a

degeneracy of 1. Accounting for these degeneracy factors in the number of conducting

modes and the density of states when modeling field-effect-transistor characteristics

and thermoelectric performance is essential to ensure the correct trends as a function

of film thickness are obtained. Illustrated in Figure A.2 below is the energy difference

between the conduction band Kc and Σc valleys and valence band Kv and Γv valleys

as a function of film thickness for the semiconducting TMDs. The band offset energies

for each material as a function of film thickness is tabulated in Table A.2 below.

The correction to the underestimated bandgaps provided by the hybrid HSE func-
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(a) Conduction band (b) Valence band

Figure A.2: Band offsets calculated using the hybrid HSE functional with spin orbit
coupling for one to four monolayers of MoS2, MoSe2, WS2 and WSe2. (a) Offset
between the conduction band Kc and Σc valleys, (b) Offset between the valence band
Kv and Γv valleys.

Structure Transition (meV) MoS2 MoSe2 WS2 WSe2

1L Γv to Kv 162.1 486.1 365.0 632.0

Kc to Σc 228.8 142.0 112.0 47.0

2L Γv to Kv 138.1 300.2 290.1 510.0

Kc to Σc 137.7 68.6 77.4 37.0

3L Γv to Kv 97.1 210.5 225.3 430.0

Kc to Σc 67.7 51.9 50.6 33.6

4L Γv to Kv 52.6 84.1 100.7 270.1

Kc to Σc 33.4 23.9 28.5 15.8

Table A.2: HSE-SOC calculations of conduction and valence band offsets as a function
of film thickness.

tional occurs due to shifts of the absolute valence and conduction band energies com-

pared to the mean field PBE calculation. The hybrid HSE functional rigidly shifts

the conduction band energies up with respect to the PBE conduction band energies.

The HSE functional lowers the the valence band energies with respect to the PBE

valence band energies but by an amount that is lower in comparison to the correction

applied to the conduction band energies. Illustrated in Figure A.3 below are the nat-

ural band lineups between the monolayer semiconducting Group VI transition metal

dichalcogenides and 1T and 2H SnS. Obtaining accurate descriptions of the natural

band lineups between materials is essential to identify suitable material materials
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Figure A.3: Natural band line up between monolayers of MoS2, MoSe2, WS2 and
WSe2 in a trigonal prismatic coordination and SnS in a trigonal prismatic (2H) and
octahedral (1T) coordination. Calculations are done using the hybrid HSE functional
with spin orbit interaction

for applications in tunnel field effect transistors, photocatalytical water splitting and

photovoltaics.
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Appendix B

2D Material Database

The structure files and data files generated through the course of this study have been

uploaded to the UC Riverside Bourns College of Engineering: 2D materials Merritt

repository which is hosted by the University of California Curation Center (UCR3).

The URL for the repository can be accessed online through Ref. [218]. This persistent

URL can be shared with any researcher which provides them access to the range of

structure files, output data files and post-processing scripts that have been uploaded.

The data sets that have been uploaded are listed in alphabetical order of the Primary

Id as illustrated in Figure B.1 below. The steps to retrieve and add files from and

Figure B.1: Main page of 2D materials database

to the repository are listed below. Detailed documentation on managing data on the
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repository can be found online in Ref. [219]

B.1 Retrieving Data

The Primary Id link provides access to the metadata associated with a data set along

with the link to download the dataset using the Download object button. An example

screen capture is illustred below.

Figure B.2: Data retrieval screen and object metadata on Merritt repository

B.2 Adding Data

Members of the LAboratory For Terascale and Terahertz Electronics have the ability

to continue to add files to the repository. A wide range of data (images, text, etc.)

and file types (.pdf, .tar, .zip) are supported. To upload data through the Merritt

User Interface use the Add Object screen of the repository. An example screen capture

is illustrated below.
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Figure B.3: Data upload screen with Merritt repository

The minimum recommended requirements for an upload include

� A single object file that will be uploaded

� Metadata for the object file being uploaded. This includes a title name for the

file, name of uploader and date of upload.
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Appendix C

VASP Postprocessing Scripts

A number of MATLAB scripts have been used throughout this study to post-process

the data generated by VASP. These scripts read the EIGENVAL and DOSCAR files

output by VASP and are used to extract and plot band structure, total and orbital

and site projected density of states and to calculate the density of modes which is

used as input for the linear response calculations of material properties. These scripts

organized by their function are listed in this section of the Appendix along with a

brief tutorial on their use.

C.1 VASP bandstructure

To plot the bandstructure with VASP the EIGENVAL file following a bandstructure

is required for the MATLAB code listed below.

clear all

%E-k plot from VASP data
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%% just for chalcogenides: bulk(hexagonal) and 2D

ev_to_ryd=13.6;

%%%%%%%% Inputs %%%%%%%

% Input file for E-k data in VASP:EIGVAL %

%---------------------------------------%

filename=’EIGENVAL’;

% Fermi energy of the system in eV %

%Ef=5.0265;

Nk=20;

Ne=32;

% number of directions%

% hex=7; 2D=3 %

Nd=3;

Ntotal=Nk*Ne*Nd;

%%%%%%%%% First Block: Reading %%%%

fid=fopen(filename,’r’);

col = zeros(Ntotal,1);
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%skip first 6 lines

for i = 1:6

line=fgetl(fid);

end

colIndex = 1;

for ii=1:Nk*Nd

c = textscan(fid,’%d %f’,Ne+2);

%c = textscan(fid,’%d %f %f’,Ne+2);

col(colIndex:colIndex+Ne-1) = c{1,2}(3:Ne+2);

col(colIndex:colIndex+Ne-1) = c{1,2}(3:Ne+2);

colIndex = colIndex + Ne;

end

fclose(fid);

A=col;

clear col

A=A-Ef;

%%%
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%% for 2D structure: 1L, 2L %%

%{

l1=0.5774; l2=l1+0.3333; l3=l2+0.6667;

%l1=0.6667; l2=l1+0.5774; l3=l2+0.3333; %K - G - M - K

%l1=0.6667; l2=l1+0.5774; l3 = l2+0.3333; % Used for K - G - M

k1=linspace(0,l1,Nk); k2=linspace(l1,l2,Nk);

k3=linspace(l2,l3,Nk);

kmesh=[k1’ k2’ k3’];

% for the vertical lines to show k directions

Emin=-2; Emax=3;

EE=[Emin Emax];

KD1=[l1 l1]; KD2=[l2 l2]; KD3=[l3 l3];

% for the horizontal line to show the Fermi level %

kmin=0; kmax=l3;

kk=[kmin kmax]; E=[0 0];

klabel=[’G’;’M’;’K’;’G’];

%}
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%% for hexagonal bulk structure %%

% k mesh%%

c1=0.5774; c2=0.3334;

c3=0.6667; c4=0.1228;

%% G-M-K-G-A-L-H-A

%c1=0.5; c2=0.5; c3=0.4;

c4=0.5; %% G-M-K-G-A-L-H-A

%c1=0.1228; c2=0.5774;

c3=0.3334; c4=0.6667; %% G-A-L-H-A

%c1=0.1228; c2=0.6667;

c3=0.1228; c4=0.6667; %% H-K-G-A-H

l1=c1; l2=l1+c2; l3=l2+c3; l4=l3+c4; l5=l4+c1;

l6=l5+c2; l7=l6+c3;

k1=linspace(0,l1,Nk);

k2=linspace(l1,l2,Nk);

k3=linspace(l2,l3,Nk);

k4=linspace(l3,l4,Nk);

k5=linspace(l4,l5,Nk);

k6=linspace(l5,l6,Nk);
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k7=linspace(l6,l7,Nk);

kmesh=[k1’ k2’ k3’ k4’ k5’ k6’ k7’];

% for the vertical lines to show k directions

Emin=-2.8; Emax=2.8;

EE=[Emin Emax];

KD1=[l1 l1]; KD2=[l2 l2]; KD3=[l3 l3]; KD4=[l4 l4];

KD5=[l5 l5]; KD6=[l6 l6];

% for the horizontal line to show the Fermi level %

kmin=0; kmax=l3;

kk=[kmin kmax]; E=[0 0];

%klabel=[’G’;’M’;’K’;’G’;’A’; ’L’; ’H’; ’A’];

%}

%% Find the band gap %%

%% works only when Ef is inside the bandgap %%

Nkk=Nk*Nd;

cond_min=zeros(1,Nkk);

valence_max=zeros(1,Nkk);

for ii=1:Nkk

Ekk= A((ii-1)*Ne+1:ii*Ne);
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ind_valence = find(Ekk <= 0);

ind_conduct = find(Ekk >= 0);

valence_max(ii) = max(Ekk(ind_valence));

cond_min(ii) = min(Ekk(ind_conduct));

end

[E_top_valence, ind_q_val] = max(valence_max);

[E_bot_conduct, ind_q_cond] = min(cond_min);

%kmeshplot=[k1 k2 k3 k4 k5 k6 k7];

kmeshplot=[k1 k2 k3 k4 ];

%kmeshplot=[k1 k2 k3];

%kmeshplot=[k1 k2];

k_top_valence=kmeshplot(ind_q_val)

k_bot_conduct=kmeshplot(ind_q_cond)

%figure(’units’,’inches’,’position’,[0.1 0.1 9 5]);

%%%%%%%%% Plotting %%%%

Ek_VB=[];

Ek_CB=[];

figure(2);

for jj=1:Nd

Ek=[]; Ni=Nk*jj;
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for ii=1+(Ni-Nk):Ni

Ekk= A((ii-1)*Ne+1:ii*Ne);

Ek=[Ek;Ekk’];

end

hold on

plot(kmesh(:,jj),Ek,’r--’,’LineStyle’,’-’,’linewidth’,[4]);

end

plot([0 kmax], [0.0 0.0], ’k--’, ’linewidth’, 4’)

axis([kmin kmax Emin Emax])

% vertical lines to show each k directions

plot(KD1, EE, ’k’,’linewidth’,[1])

plot(KD2, EE, ’k’,’linewidth’,[1])

plot(KD3, EE, ’k’,’linewidth’,[1])

plot(KD4, EE, ’k’,’linewidth’,[1])

plot(KD5, EE, ’k’,’linewidth’,[3])

%plot(KD6, EE, ’k’,’linewidth’,[3])

%set(gca,’XTick’,[0 l1 l2 l3 l4 l5 l6 l7])

set(gca,’XTick’,[0 l1 l2 l3 l4 l5])

%set(gca,’XTick’,[0 l1 l2 l3 ])

set(gca, ’XTickLabel’,klabel)

box on
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set(gcf, ’Color’,’w’)

hold on

if E_bot_conduct < E_top_valence

E_gap = 0;

fprintf(’\n Band gap = 0 eV\n’)

else

E_gap = E_bot_conduct - E_top_valence;

fprintf(’\n Band gap = %f eV\n’, E_gap)

end

C.2 VASP Total and Projected Density of States

To calculate, plot and analyze the total and projected density of states of a material

using VASP the DOSCAR file is required. The MATLAB code listed below parses the

information contained within the DOSCAR file and enables the total and projected

density of states to be plot.

%clear all

ev_to_ryd=13.6;

%%%%%%%% Inputs %%%%%%%

filename=’DOSCAR’;

Ef=-2.999;
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% number of energy points for each direction %

Ne=3000;

% Number of atoms, required for pdos only

Na=3;

fid=fopen(filename,’r’);

%skip first 6 lines

for i = 1:6

line=fgetl(fid);

end

c = textscan(fid,’%f %f %f’,Ne); %% read the data %

col1 = c{1,1}(1:Ne);

col2 = c{1,2}(1:Ne);

col3 = c{1,3}(1:Ne);

fclose(fid);

A=[col1 col2 col3];

E1=A(:,1)-Ef;
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dos=A(:,2);

break

Ntotal=Ne*Na;

fid=fopen(filename,’r’);

col1 = zeros(Ntotal,1);

col2 = zeros(Ntotal,1);

col3 = zeros(Ntotal,1);

col4 = zeros(Ntotal,1);

col5 = zeros(Ntotal,1);

col6 = zeros(Ntotal,1);

col7 = zeros(Ntotal,1);

col8 = zeros(Ntotal,1);

col9 = zeros(Ntotal,1);

col10 = zeros(Ntotal,1);

%skip first Ne+6 lines

for i = 1:Ne+6

line=fgetl(fid);

end
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% loop (skip first 1 line and read Ne lines) until end

colIndex = 1;

%order is s, py, pz, px, dxy, dyz, dz2-r2, dxz, dx2-y2

%PDOS is output for each atom

for ii=1:Na

c = textscan(fid,’%f %f %f %f %f %f %f %f %f %f’,Ne+1);

col1(colIndex:colIndex+Ne-1) = c{1,2}(2:Ne+1);

col2(colIndex:colIndex+Ne-1) = c{1,3}(2:Ne+1);

col3(colIndex:colIndex+Ne-1) = c{1,4}(2:Ne+1);

col4(colIndex:colIndex+Ne-1) = c{1,5}(2:Ne+1);

col5(colIndex:colIndex+Ne-1) = c{1,6}(2:Ne+1);

col6(colIndex:colIndex+Ne-1) = c{1,7}(2:Ne+1);

col7(colIndex:colIndex+Ne-1) = c{1,8}(2:Ne+1);

col8(colIndex:colIndex+Ne-1) = c{1,9}(2:Ne+1);

col9(colIndex:colIndex+Ne-1) = c{1,10}(2:Ne+1);

col10(colIndex:colIndex+Ne-1) = c{1,1}(2:Ne+1);

colIndex = colIndex + Ne;

end

fclose(fid);

E2=col10(1:Ne)-Ef;

colt=col1+col2+col3+col4+col5+col6+col7+col8+col9;

colts=col1;

coltp=col2+col3+col4; %%
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coltd=col5+col6+col7+col8+col9;

%B=[colt col1 col2 col3 col4 col5 col6 col7 col8 col9];

B=[colt colts coltp coltd];

tdos=zeros(Ne,1);

ddos=zeros(Ne,1);

dz2dos=zeros(Ne,1);

dxydos=zeros(Ne,1);

dx2y2dos=zeros(Ne,1);

pzdos=zeros(Ne,1);

pxdos=zeros(Ne,1);

pydos=zeros(Ne,1);

%total Density of states from PDOS

for jj=1:Na

tdos=tdos+colt(Ne*(jj-1)+1:jj*Ne);

end

%total d-orbital Density of states from PDOS

for jj=1:Na

ddos=ddos+coltd(Ne*(jj-1)+1:jj*Ne);

end
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for jj=1:Na

dz2dos=dz2dos+col7(Ne*(jj-1)+1:jj*Ne);

dxydos=dxydos+col5(Ne*(jj-1)+1:jj*Ne);

dx2y2dos=dx2y2dos+col9(Ne*(jj-1)+1:jj*Ne);

end

for jj=1:Na

pzdos=pzdos+col3(Ne*(jj-1)+1:jj*Ne);

pxdos=pxdos+col4(Ne*(jj-1)+1:jj*Ne);

pydos=pydos+col2(Ne*(jj-1)+1:jj*Ne);

end

C.3 VASP Density of Modes

To calculate the thermoelectric properties in linear response in this work we numer-

ically calculate the density of modes using the ab-initio simulation package, VASP.

The density of modes for a given structure and material is computed by “counting”

the number of bands that intersect within an energy range of interest over which the

density of modes (DOM) is being computed. The band-counting approach for a 1D

band is illustrated below.

Extrapolating this heuristic 1D band-counting method to a full numerical band

structure requires the energy versus momentum dispersion for all k-points within

the irreducible Brillouin zone of the material. These eigen-energies and bands at

each k-point are calculated using VASP in this work. In principle, the energy versus

momentum relation can be obtained from any electronic structure approach. The
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MATLAB code that is used to count over the density of modes using an EIGENVAL

file from VASP is detailed below.

clear all

%% mode calculations from Vasp E-k data %%

%% Written by Darshana Wickramaratne %%

ah=3.818e-10; %lattice constant

kymax=(2*pi/ah)*(1/sqrt(3)); %TMDC

Lz=5.193e-10;

pre_factor = 1/pi

Eg_exp=1.9;

Eg_Vasp=1.68;

Eshift=(Eg_exp-Eg_Vasp)/2;

filename=’Ek_1L_InS_51_51’;

%Ef= 1.0591;

%------------------------------%

Nx=51; Ny=51;

Nk=Nx*Ny;

Nb=64;
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Nd=1;

Ntotal=Nk*Nb*Nd;

Ne=2001;

Emin=-2; Emax=2;

E = linspace(Emin,Emax,Ne);

fid=fopen(filename,’r’);

col = zeros(Ntotal,1);

for i = 1:6

line=fgetl(fid);

end

colIndex = 1;

for ii=1:Nk*Nd

c = textscan(fid,’%d %f’,Nb+2);

col(colIndex:colIndex+Nb-1) = c{1,2}(3:Nb+2);

colIndex = colIndex + Nb;

end

fclose(fid);

A=col-Ef;

clear col

Eshift = 0;
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for ii=1:Ntotal

if A(ii)<0

A(ii)=A(ii)-Eshift;

else

A(ii)=A(ii)+Eshift;

end

end

%%%%%

for ix=1:Nx

for iy=1:Ny

Ek(iy,:,ix)=A(1+(iy-1)*Nb+(ix-1)*Ny*Nb:(iy*Nb)+((ix-1)*Ny*Nb));

end

end

clear A

ME=zeros(1,Ne);

ky=0:kymax/(Ny-1):kymax;

dky=ky(2)-ky(1);

T=zeros(Nx,Ne);

for Iky=1:Ny-1

Ekk = squeeze(Ek(Iky,:,:))’;

for jj = 1:Nx-1

[Iky jj]

id=(Iky-1)*Nx + jj;

index(id)=1;
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for hh = 1:Ne

for ii = 1:Nb

if ((Ekk(jj,ii) < E(hh)) && (Ekk(jj+1,ii)> E(hh)))

% for conduction band

|| ((Ekk(jj,ii) > E(hh)) && (Ekk(jj+1,ii)< E(hh)))

% for valence band

T(Iky,hh) = T(Iky,hh) + 1;

end;

end;

end;

end;

end;

for IE=1:Ne

ME(IE)=pre_factor*(sum(squeeze(T(:,IE))*dky));

end

ME_3D = ME/Lz; % in unit of /m^2 %%

save ME_Material E Ne Emin Emax ME ME_3D

The EIGENVAL file that is used as input for the script above should contain

all the k-points that are sampled over in the irreducible Brillouin zone or the full

Brillouin zone. The MATLAB friendly mat file that is saved at the end has an array

of energy and the density of modes for the material. This energy versus density of

modes relation can now be used to compute the properties of the material in linear

response.
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