- Main
Toward Fast Screening of Organic Solar Cell Blends
Abstract
The ever increasing library of materials systems developed for organic solar-cells, including highly promising non-fullerene acceptors and new, high-efficiency donor polymers, demands the development of methodologies that i) allow fast screening of a large number of donor:acceptor combinations prior to device fabrication and ii) permit rapid elucidation of how processing affects the final morphology/microstructure of the device active layers. Efficient, fast screening will ensure that important materials combinations are not missed; it will accelerate the technological development of this alternative solar-cell platform toward larger-area production; and it will permit understanding of the structural changes that may occur in the active layer over time. Using the relatively high-efficiency poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'''-di(2-octyldodecyl)-2,2';5',2'';5'',2'''-quaterthiophen-5,5'''-diyl)] (PCE11):phenyl-C61-butyric acid-methyl-ester acceptor (PCBM) blend systems, it is demonstrated that by means of straight-forward thermal analysis, vapor-phase-infiltration imaging, and transient-absorption spectroscopy, various blend compositions and processing methodologies can be rapidly screened, information on promising combinations can be obtained, reliability issues with respect to reproducibility of thin-film formation can be identified, and insights into how processing aids, such as nucleating agents, affect structure formation, can be gained.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-