Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Microwell devices with finger-like channels for long-term imaging of HIV-1 expression kinetics in primary human lymphocytes

Abstract

A major obstacle in the treatment of human immunodeficiency virus type 1 (HIV-1) is a sub-population of latently infected CD4(+) T lymphocytes. The cellular and viral mechanisms regulating HIV-1 latency are not completely understood, and a promising technique for probing the regulation of HIV-1 latency is single-cell time-lapse microscopy. Unfortunately, CD4(+) T lymphocytes rapidly migrate on substrates and spontaneously detach, making them exceedingly difficult to track, hampering single-cell level studies. To overcome these problems, we built microdevices with a three-level architecture. The devices contain arrays of finger-like microchannels to "corral" T-lymphocyte migration, round wells that are accessible to pipetting, and microwells connecting the microchannels with the round wells. T lymphocytes that are loaded into a well first settle into the microwells and then to microchannels by gravity. Within the microchannels, T lymphocytes are in favorable culture conditions because they are in physical contact with each other, under no mechanical stress, and fed from a large reservoir of fresh medium. Most importantly, T lymphocytes in the microchannels are not exposed to any flow and their random migration is restricted to a nearly one-dimensional region, greatly facilitating long-term tracking of multiple cells in time-lapse microscopy. The devices have up to nine separate round wells, making it possible to test up to nine different cell lines or medium conditions in a single experiment. Activated primary CD4(+) T lymphocytes, resting primary CD4(+) T lymphocytes, and THP-1 monocytic leukemia cells loaded into the devices maintained viability over multiple days. The devices were used to track the fluorescence level of individual primary CD4(+) T lymphocytes expressing green fluorescent protein (GFP) for up to 60 hours (h) and to quantify single-cell gene-expression kinetics of four different HIV-1 variants. The kinetics of GFP expression from the lentiviruses in the primary CD4(+) T lymphocytes agree with previous measurements of these lentiviral vectors in the immortalized Jurkat T lymphocyte cell line. The proposed devices offer a simple, robust approach to long-term single-cell studies of environmentally sensitive primary lymphocytes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View