Skip to main content
eScholarship
Open Access Publications from the University of California

Realization of Electron Antidoping by Modulating the Breathing Distortion in BaBiO3

Abstract

The recent proposal of antidoping scheme breaks new ground in conceiving conversely functional materials and devices; yet, the few available examples belong to the correlated electron systems. Here, we demonstrate both theoretically and experimentally that the main group oxide BaBiO3 is a model system for antidoping using oxygen vacancies. The first-principles calculations show that the band gap systematically increases due to the strongly enhanced Bi-O breathing distortions away from the vacancies and the annihilation of Bi 6s/O 2p hybridized conduction bands near the vacancies. Our further spectroscopic experiments confirm that the band gap increases systematically with electron doping, with a maximal gap enhancement of ∼75% when the film's stoichiometry is reduced to BaBiO2.75. These results unambiguously demonstrate the remarkable antidoping effect in a material without strong electron correlations and underscores the importance of bond disproportionation in realizing such an effect.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View