Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Evidence for Phosphorylation-Dependent, Dynamic, Regulation of mGlu5 and Homer2 in Expression of Cocaine Aversion in Mice

Abstract

Cocaine-induced changes in the expression of the glutamate-related scaffolding protein Homer2 influence this drug's psychostimulant and rewarding properties. In response to neuronal activity, Homer2 is phosphorylated on S117/S216 by calcium-calmodulin kinase IIα (CaMKIIα), which induces a rapid dissociation of mGlu5-Homer2 scaffolds. Herein, we examined the requirement for Homer2 phosphorylation in cocaine-induced changes in mGlu5-Homer2 coupling, to include behavioral sensitivity to cocaine. For this, mice with alanine point mutations at (S117/216)-Homer2 (Homer2AA/AA ) were generated, and we determined their affective, cognitive and sensorimotor phenotypes, as well as cocaine-induced changes in conditioned reward and motor hyperactivity. The Homer2AA/AA mutation prevented activity-dependent phosphorylation of S216 Homer2 in cortical neurons, but Homer2AA/AA mice did not differ from wild-type (WT) controls with respect to Morris maze performance, acoustic startle, spontaneous or cocaine-induced locomotion. Homer2AA/AA mice exhibited signs of hypoanxiety similar to the phenotype of transgenic mice with a deficit in signal-regulated mGluR5 phosphorylation (Grm5AA/AA ). However, opposite of Grm5AA/AA mice, Homer2AA/AA mice were less sensitive to the aversive properties of high-dose cocaine under both place-conditioning and taste-conditioning procedures. Acute injection with cocaine caused dissociation of mGluR5 and Homer2 in striatal lysates from WT, but not Homer2AA/AA mice, suggesting a molecular basis for the deficit in cocaine aversion. These findings indicate that CaMKIIα-dependent phosphorylation of Homer2 gates the negative motivational valence of high-dose cocaine via regulation of mGlu5 binding, furthering an important role for dynamic changes in mGlu5-Homer interactions in addiction vulnerability.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View