Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Long non-coding RNAs identify a subset of luminal muscle-invasive bladder cancer patients with favorable prognosis

Abstract

BACKGROUND:Muscle-invasive bladder cancer (MIBC) is a heterogeneous disease, and gene expression profiling has identified several molecular subtypes with distinct biological and clinicopathological characteristics. While MIBC subtyping has primarily been based on messenger RNA (mRNA), long non-coding RNAs (lncRNAs) may provide additional resolution. METHODS:LncRNA expression was quantified from microarray data of a MIBC cohort treated with neoadjuvant chemotherapy (NAC) and radical cystectomy (RC) (n = 223). Unsupervised consensus clustering of highly variant lncRNAs identified a four-cluster solution, which was characterized using a panel of MIBC biomarkers, regulon activity profiles, gene signatures, and survival analysis. The four-cluster solution was confirmed in The Cancer Genome Atlas (TCGA) cohort (n = 405). A single-sample genomic classifier (GC) was trained using ridge-penalized logistic regression and validated in two independent cohorts (n = 255 and n = 94). RESULTS:NAC and TCGA cohorts both contained an lncRNA cluster (LC3) with favorable prognosis that was enriched with tumors of the luminal-papillary (LP) subtype. In both cohorts, patients with LP tumors in LC3 (LPL-C3) were younger and had organ-confined, node-negative disease. The LPL-C3 tumors had enhanced FGFR3, SHH, and wild-type p53 pathway activity. In the TCGA cohort, LPL-C3 tumors were enriched for FGFR3 mutations and depleted for TP53 and RB1 mutations. A GC trained to identify these LPL-C3 patients showed robust performance in two validation cohorts. CONCLUSIONS:Using lncRNA expression profiles, we identified a biologically distinct subgroup of luminal-papillary MIBC with a favorable prognosis. These data suggest that lncRNAs provide additional information for higher-resolution subtyping, potentially improving precision patient management.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View