Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Motor cortex excitability in chronic fatigue syndrome

Abstract

OBJECTIVE:To use transcranial magnetic stimulation (TMS) to define motor cortical excitability in chronic fatigue syndrome (CFS) subjects during a repetitive, bilateral finger movement task. METHODS:A total of 14 CFS patients were tested and compared with 14 age-matched healthy control subjects. TMS of the motor cortex (5% above threshold) was used to elicit motor evoked potentials (MEPs). Subjects performed regular (3-4/s) repetitive bilateral opening-closing movements of the index finger onto the thumb. MEPs of the first dorsal interosseus (FDI) were measured before, immediately following exercise periods of 30, 60 and 90 s, and after 15 min of rest. RESULTS:Performance, defined by rate of movement, was significantly slower in CFS subjects (3.5/s) than in controls (4. 0/s) independent of the hand measured. The rate, however, was not significantly affected by the exercise duration for either group. The threshold of TMS to evoke MEPs from the FDI muscle was significantly higher in CFS than in control subjects, independent of the hemisphere tested. A transient post-exercise facilitation of MEP amplitudes immediately after the exercise periods was present in controls independent of the hemisphere tested, but was absent in CFS subjects. A delayed facilitation of MEPs after 15-30 min of rest was restricted to the non-dominant hemisphere in controls; delayed facilitation was absent in CFS subjects. CONCLUSIONS:Individuals with CFS do not show the normal fluctuations of motor cortical excitability that accompany and follow non-fatiguing repetitive bimanual finger movements.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View