Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Chemically coupling SnO2 quantum dots and MXene for efficient CO2 electroreduction to formate and Zn–CO2 battery

Abstract

Electrochemical conversion of CO2 into formate is a promising strategy for mitigating the energy and environmental crisis, but simultaneously achieving high selectivity and activity of electrocatalysts remains challenging. Here, we report low-dimensional SnO2 quantum dots chemically coupled with ultrathin Ti3C2Tx MXene nanosheets (SnO2/MXene) that boost the CO2 conversion. The coupling structure is well visualized and verified by high-resolution electron tomography together with nanoscale scanning transmission X-ray microscopy and ptychography imaging. The catalyst achieves a large partial current density of -57.8 mA cm-2 and high Faradaic efficiency of 94% for formate formation. Additionally, the SnO2/MXene cathode shows excellent Zn-CO2 battery performance, with a maximum power density of 4.28 mW cm-2, an open-circuit voltage of 0.83 V, and superior rechargeability of 60 h. In situ X-ray absorption spectroscopy analysis and first-principles calculations reveal that this remarkable performance is attributed to the unique and stable structure of the SnO2/MXene, which can significantly reduce the reaction energy of CO2 hydrogenation to formate by increasing the surface coverage of adsorbed hydrogen.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View