Skip to main content
Download PDF
- Main
A new continuous noninvasive finger cuff device (Vitalstream) for cardiac output that communicates wirelessly via bluetooth or Wi-Fi.
Published Web Location
https://doi.org/10.1186/s12871-023-02114-zAbstract
Background
The new noninvasive Vitalstream (VS) continuous physiological monitor (Caretaker Medical LLC, Charlottesville, Virginia), allows continuous cardiac output by a low pump-inflated, finger cuff that pneumatically couples arterial pulsations via a pressure line to a pressure sensor for detection and analysis. Physiological data are communicated wirelessly to a tablet-based user interface via Bluetooth or Wi-Fi. We evaluated its performance against thermodilution cardiac output in patients undergoing cardiac surgery.Methods
We compared the agreement between thermodilution cardiac output to that obtained by the continuous noninvasive system during cardiac surgery pre and post-cardiac bypass. Thermodilution cardiac output was performed routinely when clinically indicated by an iced saline cold injectate system. All comparisons between VS and TD/CCO data were post-processed. In order to match the VS CO readings to the averaged discrete TD bolus data, the averaged CO readings of the ten seconds of VS CO data points prior to a sequence of TD bolus injections was matched. Time alignment was based on the medical record time and the VS time-stamped data points. The accuracy against reference TD measurements was assessed via Bland-Altman analysis of the CO values and standard concordance analysis of the ΔCO values (with a 15% exclusion zone).Results
Analysis of the data compared the accuracy of the matched measurement pairs of VS and TD/CCO VS absolute CO values with and without initial calibration to the discrete TD CO values, as well as the trending ability, i.e., ΔCO values of the VS physiological monitor compared to those of the reference. The results were comparable with other non-invasive as well as invasive technologies and Bland-Altman analyses showed high agreement between devices in a diverse patient population. The results are significant regarding the goal of expanding access to effective, wireless and readily implemented fluid management monitoring tools to hospital sections previously not covered because of the limitations of traditional technologies.Conclusion
This study demonstrated that the agreement between the VS CO and TD CO was clinically acceptable with a percent error (PE) of 34.5 to 38% with and without external calibration. The threshold for an acceptable agreement between the VS and TD was considered to be below 40% which is below the threshold recommended by others.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%