Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Challenging the Relevance of Unbound Tissue-to-Blood Partition Coefficient (Kpuu) on Prediction of Drug-Drug Interactions

Abstract

Purpose

To examine the theoretical/practical utility of the liver-to-blood partition coefficient (Kpuu) for predicting drug-drug interactions (DDIs), and compare the Kpuu-approach to the extended clearance concept AUCR-approach.

Methods

The Kpuu relationship was derived from first principles. Theoretical simulations investigated the impact of changes in a single hepatic-disposition process on unbound systemic (AUCB,u) and hepatic exposure (AUCH,u) versus Kpuu. Practical aspects regarding Kpuu utilization were examined by predicting the magnitude of DDI between ketoconazole and midazolam employing published ketoconazole Kpuu values.

Results

The Kpuu hepatic-disposition relationship is based on the well-stirred model. Simulations emphasize that changes in influx/efflux intrinsic clearances result in Kpuu changes, however AUCH,u remains unchanged. Although incorporation of Kpuu is believed to improve DDI-predictions, utilizing published ketoconazole Kpuu values resulted in prediction errors for a midazolam DDI.

Conclusions

There is limited benefit in using Kpuu for DDI-predictions as the AUCR-based approach can reasonably predict DDIs without measurement of intracellular drug concentrations, a difficult task hindered by experimental variability. Further, Kpuu changes can mislead as they may not correlate with changes in AUCB,u or AUCH,u. The well-stirred model basis of Kpuu when applied to hepatic-disposition implies that nuances of intracellular drug distribution are not considered by the Kpuu model.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View