Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Assessment of clinical measures of total and regional body composition from a commercial 3-dimensional optical body scanner

Abstract

Background

The accurate assessment of total body and regional body circumferences, volumes, and compositions are critical to monitor physical activity and dietary interventions, as well as accurate disease classifications including obesity, metabolic syndrome, sarcopenia, and lymphedema. We assessed body composition and anthropometry estimates provided by a commercial 3-dimensional optical (3DO) imaging system compared to criterion measures.

Methods

Participants of the Shape Up! Adults study were recruited for similar sized stratifications by sex, age (18-40, 40-60, >60 years), BMI (under, normal, overweight, obese), and across five ethnicities (non-Hispanic [NH] Black, NH White, Hispanic, Asian, Native Hawaiian/Pacific Islander). All participants received manual anthropometry assessments, duplicate whole-body 3DO (Styku S100), and dual-energy X-ray absorptiometry (DXA) scans. 3DO estimates provided by the manufacturer for anthropometry and body composition were compared to the criterion measures using concordance correlation coefficient (CCC) and Bland-Altman analysis. Test-retest precision was assessed by root mean square error (RMSE) and coefficient of variation.

Results

A total of 188 (102 female) participants were included. The overall fat free mass (FFM) as measured by DXA (54.1 ± 15.2 kg) and 3DO (55.3 ± 15.0 kg) showed a small mean difference of 1.2 ± 3.4 kg (95% limits of agreement -7.0 to +5.6) and the CCC was 0.97 (95% CI: 0.96-0.98). The CCC for FM was 0.95 (95% CI: 0.94-0.97) and the mean difference of 1.3 ± 3.4 kg (95% CI: -5.5 to +8.1) reflected the difference in FFM measures. 3DO anthropometry and body composition measurements showed high test-retest precision for whole body volume (1.1 L), fat mass (0.41 kg), percent fat (0.60%), arm and leg volumes, (0.11 and 0.21 L, respectively), and waist and hip circumferences (all <0.60 cm). No group differences were observed when stratified by body mass index, sex, or race/ethnicity.

Conclusions

The anthropometric and body composition estimates provided by the 3DO scanner are precise and accurate to criterion methods if offsets are considered. This method offers a rapid, broadly available, and automated method of body composition assessment regardless of body size. Further studies are recommended to examine the relationship between measurements obtained by 3DO scans and metabolic health in healthy and clinical populations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View