Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Novel ionization reagent for the measurement of gas‐phase ammonia and amines using a stand‐alone atmospheric pressure gas chromatography (APGC) source

Published Web Location

https://doi.org/10.1002/rcm.8561
Abstract

Rationale

Contaminants present in ambient air or in sampling lines can interfere with the target analysis through overlapping peaks or causing a high background. This study presents a positive outcome from the unexpected presence of N-methyl-2-pyrrolidone, released from a PALL HEPA filter, in the analysis of atmospherically relevant gas-phase amines using chemical ionization mass spectrometry.

Methods

Gas-phase measurements were performed using a triple quadrupole mass spectrometer equipped with a modified atmospheric pressure gas chromatography (APGC) source which allows sampling of the headspace above pure amine standards. Gas-phase N-methyl-2-pyrrolidone (NMP) emitted from a PALL HEPA filter located in the inlet stream served as the ionizing agent.

Results

This study demonstrates that some alkylamines efficiently form a [NMP + amine+H]+ cluster with NMP upon chemical ionization at atmospheric pressure. The extent of cluster formation depends largely on the proton affinity of the amine compared with that of NMP. Aromatic amines (aniline, pyridine) and diamines (putrescine) were shown not to form cluster ions with NMP.

Conclusions

The use of NMP as an ionizing agent with stand-alone APGC provided high sensitivity for ammonia and the smaller amines. The main advantages, in addition to sensitivity, are direct sampling into the APGC source and avoiding uptake on sampling lines which can be a significant problem with ammonia and amines.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View