Skip to main content
eScholarship
Open Access Publications from the University of California

Intermittent spatio-temporal de-synchro-nization and sequenced synchrony in ECoG signals

  • Author(s): Kozma, Robert
  • Freeman, Walter J, III
  • et al.

Published Web Location

https://doi.org/10.1063/1.2979694
Abstract

Electrocorticographic ECoG signals from the brain surface typically exhibit high synchrony across large cortical areas, interrupted by brief periods of desynchronization exhibiting propagating phase discontinuities, across which spatial patterns of phase emerge in selected frequency bands. Experiments with rabbits trained using classical conditioning paradigms indicated that such desynchronization periods demarcate cognitive processing in the subjects; the ECoG in the frames between such periods revealed spatial patterns of amplitude modulation that were classified with respect to sensory stimuli that the rabbits had been trained to recognize. The present work describes intermittent synchrony and desynchronization of ECoG signals measured over the visual cortex. We analyze the analytic amplitude AA and analytic phase AP of the signals bandpassed over the beta band 12.5–25 Hz and theta band 3–7 Hz using the Hilbert transform. The AP of analytic signals evaluated using a Shannon-based synchronization index in theta band exhibits phase synchronization for varying time periods averaging about 1 s, interrupted by desynchronization periods of duration about 0.1 s. Synchronization periods in the beta-band last 100 ms, with interruptions by desynchronization lasting one-tenth that, in which the analytic amplitude drops drastically. During these “null spikes,” the analytic phase is undefined, and the spatial and temporal phase differences show high dispersion. Detailed examination of the bandpass filtered ECoG confirms the presence of a shared mean frequency in a frame of synchronized oscillation, at which frequency the spatial pattern of the AP has the form of a cone. Between frames the AA approaches zero. The form of the null spike resembles a tornado a vortex, as shown in sequential frames by a rotating spatial pattern of amplitude in the filtered ECoG.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View