Skip to main content
eScholarship
Open Access Publications from the University of California

Improving the geoid: Combining altimetry and mean dynamic topography in the California coastal ocean

  • Author(s): Mazloff, MR
  • Gille, ST
  • Cornuelle, B
  • et al.
Abstract

©2014. American Geophysical Union. All Rights Reserved. Satellite gravity mapping missions, altimeters, and other platforms have allowed the Earth's geoid to be mapped over the ocean to a horizontal resolution of approximately 100 km with an uncertainty of less than 10 cm. At finer resolution this uncertainty increases to greater than 10 cm. Achieving greater accuracy requires accurate estimates of the dynamic ocean topography (DOT). In this study two DOT estimates for the California Current System with uncertainties less than 10 cm are used to solve for a geoid correction field. The derived field increases the consistency between the DOTs and along-track altimetric observations, suggesting it is a useful correction to the gravitational field. The correction is large compared to the dynamic ocean topography, with a magnitude of 15 cm and significant structure, especially near the coast. The results are evidence that modern high-resolution dynamic ocean topography products can be used to improve estimates of the geoid. Key PointsWe present a procedure to improve geoid models using ocean topography estimatesOcean topography products can correct geoid modelsThe uncertainty of ocean topography measurements in this region is given

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View